DISCLAIMER NOTICK

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Inquiries relative to this report may be made to

Chlef, Defense Atomic Support Agency Washington 25, D. C.

When no longer required, this document may be destroyed in accordance with applicable security regulations.

DO NOT RETURN THIS DOCUMEMT

UNCLASSIFIED

L. M. Swift, Peojochoriaer-
D.C. Sachs anid
F.M. Saner'

Stanford Research Inst
Menlo Park, Califorso

WiCLASSFIED

FOREWORD

This report presents the final resolts of one of the 46 projects comprising the military-effects program of Operation Plumbbob, which included 24 test detomans at the IVevadn Test Site in 1857.

For overall Plumbbob military-effects information, the reader is referred to the "Sammary Report of the Director, DOD Test Group (Programs 1-9)," ITR-1445, which incindes: (1) 2 desiertption of each detomation, including yield, zero-point location and envirorment, type of device, ambient atmospheric conditions, etc.; (2) 2 discussion of project results; (3) 2 summary of the objectives and results of each project; and (4) a listing of project reports for the militaryeffects progran.

ABSTRACT

Project 1.4 objectives were to measure underground effects of 2 nuclear air burst (Shot Prisecilia; 36.6 ht) as they vary with time, depth, and ground range, particularly in the region of high pressure; furnish, from these measurements, input data to other projects; and analyze there measurements with results of other tests. At 750 and 1,050 Feet from ground zero, acceleration, stress, and strain measurements were made at several depths down through 50 feet, including two measurements each of horizontal acceleration and stress. At 450, 550, $650,750,850,1,050$, and 1,350 feet, vertical acceleration and stress were measured at 50 and 10-foot depths.

Records were obtained on 52 out of 64 gage channels installed. Losses were caused by mechanical failure of one oscillograph and by miscellaneous individual channel failures.

Wave forms of acceleration and velocity showed no ideal or classical shape but could be grouped in six categories according in their characteristics.

Outrunning occurred at the ground surface at 2,500-foot ground range from a signal origimating it 1,500-foot ground range. However, outrunning can occur at closer ranges for deep measurements, and refracted signals may be recorded after arrival of local effects, as avidenced by acceleration measurements.

Attenuation of maximum downward acceleration at 5- and 10-foct depths varied between 30 and 45 percent except at 550 - and 650 -loot ranges where it was negligible. At greater depths, wave theory concerning energy transfer at an interface between two materials was borne out. Horizontal (outward) acceleration at $\mathbf{1 0}$ - and 50 -font depths was attenuated less with depth than was the corresponding peak downward acceleration.

Peak downward velocity followed an exponential decay law rather than a power law decay characteristic of downwanciacceleration. At 275-psi level, horizontal (outward) velocity showed somewhat less attenuation with depth than the downward component. At the 100-psi level, peak outward velocity at $\mathbf{5 0}$-foot depth was twice that at 10 -foot depth, owing to signals from sources closer to ground zero.

Attermation of peak displacement corresponded closely to attenuation of peak velocity.
Attenuation of maximum vertical stress was slight between the surface and 5-foot depth, and stress decreased by half for every $\mathbf{1 0}$-foot increase in depth, except at $\mathbf{5 0}$-foot depth where it increased. Stress measurements on this project were not considered entirely successful, despite extreme caution exercised in gage placement and backfill procedure.

At 275-psi overpressure, peak strain decreased abruptly between 1 - and $\mathbf{3 0}$-foot depths, leveling off to 2 constant value at greater depths. At 100 -psi overpressure, vertical strain showed almost no change with depth. This difference between the two stations could probably be traced to the longer rise time of the overpressure at 100 psi than at 275 psi .

The velocity-jump peak overpressure ratio increased with decreasing pressure, with no apparent systematic variation with yield, overpressure level or wave form, or test area. Experimental ratios agreed well with the theoretical result. Peak vertical displacementoverpressure impulse ratio data were too scattered to allow firm conclusions.

From displacement-response spectra, the change in the character of the response appeared to be associated with the interference of the refracted ground-transmitted wave and not with the local ground wave. Normalized velocity spectra for $5-$, $10-$, and 50 -foot depths showed similar maxima although the frequency at which this maximum occurred decreases with increasing depth.

In stress-strain relations, it was tentatively concluded that laboratory triaxial tests were more useful in correlation with blast result i than were compaction tests.

PREFACE

The planning and execution of Project 1.4 were under the direction of L.M. Swift, with L. H. loman serving as fteld party chief and W. M. Wells as assistant to tane project leader. Oher members of the field party incladed R. E. Aumiller, V.E. Kratow, J. Milless, R. V. Ohler, C. M. Westbrook, and H. Wuner. Miss Barbara Ames, Miss Phyllis Flanders, Mrs. Elizabeth Hearns, Miss Sherry Ward, Mrs. Barbara Wells, and Mrs. Moca Wise assisted in the data amalysis and preparation of the report.

The excellent planning and cooperation of Maj H. T. Bingham, USAF, Lt Col J.A. Kodis, USAF, and LCDR J. F. Clarke, AFSWP (DASA) Field Command, are graterully ackmowledjed. The assistance and cooperation of T. B. Goode and his party, of Project 3.8, in the control of backfill procedures are also especially recognized.

CONTENTS
 CONTENTS

FOREWORD 4
ABSTRACT 5
PREFACE 6
CHAPTER 1 DNTRODUCTION- 13
1.1 Objectives 13
1.2 Background 13
1.3 Theory 14
1.3.1 Models for Soll Reacting to Stress 14
1.3.2 Homogeneous Elastic Solid 18
1.3.3 Effects from Remate Sources- 19
1.4 Seisrmc Measurements 21
CRAPTER 2 PROCEDURE $\varepsilon 4$
2.1 Predictions 24
2.1.1 Inpat Predictions 24
2.1.2 Earth Stress 24
2.1.3 Seismic Velocity 24
2.1.4 Earth Strain 25
21.5 Earth Acceleration 25
2.2 Instrumentrition 26
2.2.1 Central Station 26
2.2 .2 Stress Gages 27
2.2 .3 Strain Gages 27
2.24 Accelerometers 27
2.2.5 Instrumeni Response 27
2.2 .6 Celibration 29
2.3 Experiment Plan 30
2.3.1 Gage Placement 30
2.3.2 Gage Coding 30
2.3.3 Gage Layout 30
2.3.4 Seismic Mieasurements 30
2.4 Field Operations 32
CHAPTER 3 RESULTS 34
3.1 Instrumentation Performance 34
3.2 Data Reduction Procertures 34
3.2.1 General 34
3.2.2 Integration Procedures 34
3.3 Gage Records and Tables of Resuits 35
3.3.1 Overpressure 35
3.3.2 Earth Acceleration- 35
3.3.3 Earth Velocity 42
3.3.4 Earth Displacement 47
3.3.5 Earth Strexs 52
3.3.6 Earth Strin 52
3.A Setrmile Mensurements 55
3.4.1 In Situ Selsmic Velocitics 61
3.4.2 Veloctiles in Backrilu 62
CHAPTER 4 DISCUSSION 65
4.1 Acceleration and Velocity Wave Forms 65
4.2 Sigmals from Remote Sources 66
4.3 Attemuation of Ground Sthock with Depth 67
4.3.1 Acceleration (Attemmation with Depth) 67
4.3.2 Velocity (Attemuation with Depth) 71
4.3.3 Displacement (Attenuation with Depth) 77
4.3.4 Stress (Allemmation with Depth) 77
4.3.5 Strain (Attencation with Depth) 82
4.4 Ground Shock and Overpressur 82
4.4.1 Acceleration (and Overpressure) 82
4.4.2 Velocity (and Overpressure) 87
4.4.3 Displacement (and Overpressure) 91
4.4.4 Strain (and Overpressure) 95
4.5 Response Spectrum of Ground Motion 95
4.5.1 Theory 95
4.5.2 Measurements 99
4.5.3 Correlation and Scallimg 103
4. 6 Soll Stress-Strain Considerations 112
4.6.1 Soll Survey Tests 112
4.5.2 Deduced Stress-Straln 116
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 117
5.1 Conclusions 117
5.1.1 Instrument Performance 117
5.1.2 Acceleration and Velocity Wave Forms 117
5.1.3 Sigmals from Remote Sources 117
5.1.4 Attenuation of Ground Shock with Depth 118
5.1.5 Ground Sbock and Overpressure 119
5.1.6 Response Spectrum of Ground Motion 119
5.1.7 Soil Stress-Strain Considerations 120
5.2 Recommenchitions 120
APPENDDX A SYMBOLS AND OVERPRESSURE WAVE FORM CLASSIFICATION 121
A. 1 Symbols 121
A. 2 Overpressure Wave Form Classification 122
APPENDD B CATALOG OF GROUND MOTTON MEASUREMENTS 124
APPENDDX C RECORD INTEGRATION AND INSTRUMENT RESPONSE 127
C. 1 Acceleration Baseline Shift 127
C. 2 lnstrument Response 130
APPENDIX D SCALETG OF POSTTIVE OVERPRESSURE MPULSE and duration 131
-2
TABLES
1.1 Relinements of Linear Elinstic Theory 16
1.2 Phenomena Explained by Various Models of Scll Bebavior 18
1.3 Approximate Overprcssures at which Outrunning of Ground Wave Occurs, Large Yleld Surface Bursts 21
1.4 Polsson's Ratio for Some Materials 23
21 Shot Prtsetlla Impat Predictions 25
2.2 Gage Layout 31
3.1 Summary of Peak Surface Overpressure, Shot Priscilla 35
3.2 Summary of Corrected Acceleration, Velocity and Displacement Data, Shot Priscilla 41
3.3 Summary of Stress Data, Shot Priscilla 54
3.4 Summary of Strain Data, Shot Priscilln 61
4.1 Enamples of Vertical Acceleration Wave Form Types Shown in Figure 4.1 67
4.2 Maxdrum Stratn, Shot Priscilla 83
4.3 Average Propagation Velocity of Direct Wave, 0 to 10 Feet, Shot Priscilla 91
4.4 Corapartson of Maximum Transient-Vertical Displacement, Shot Priscilla 35
4.5 Maximum of Normalized Velocity Spectrum, Shot Priseilla 112
4.6 Project 3.8 Soil Survey Results 116
B. 1 Sammary of Nernch Surince and Air Naclear Bursts on which Strong Ground Motion was Measured 124
B. 2 Number of Ground Motion Measurements, NTS 125
B. 3 Number af Ground Motion Mensurements, EPG 126
B.4 Summary of Mole Founds (256-pound TNT) 126
B. 5 number of Ground Motion Measurements, Jangie HE-4 126
C.1 Bateline Corrections, Shot Priscilla 128
ficures
1.1 Typical stress and strain diagrams for various models of soil bebavior-....... 15
1.2 Schematic stress-stratn relation for 2 plastic material 16
1.3 Actual record of stress versus strain in typical silty clay 17
1.4 Schematic diagram of superseismic wave front 19
1.5 \$ versus $0 / C_{L}$ and Poisson's ratio 20
1.6 Constrection of groand motion arrival time curves, Tumbler Shot 1 20
1.7 Setamic veloctty ratios versus Poissoa's ratto 22
2.1 Earth stress gage 28
2.2 Schematic, earth stratin genge 28
2.3 Earth strain gage, unassembled 29
2.4 Earth strain gage, installed 29
2.5 Gage layout 32
2.6 Seismic locations 33
3.1 Surface overpressure versus time, Stations 1 to 7, Shot Priscilla 36
3.2 Vertical acceleration versus time, Stations 1, 2 and 3, Shot Priscilla 37
3.3 Vertical acceleration versus time, Station 4, Shot Priscilla 38
3.4 Horizontal acceleration versus time, Station 4; vertical
acceleration versus time, Station 5; Shot Priscilla-- 38
3.5 Vertical acceleration versus time, Station 6, Shot Priscilla 39
3.6 Horizontal aeceleration versus time, Stetion 6; vertical
accelcration versus time, Station 7; Shot Priscilla 40
3.7 Vertical velocity versus time, Station 1, Shot Priscilla 42
3.8 Vertical velocity versus time, Station 2, Shot Priscilln $; 3$
3.9 Vertlcal velocity versus time, Statlon 3, Shot Prisellia 43
3.10 Vertical velcelty versus time, Stition 4, Shot Prisclula 44
3.11 Hortzontal velority ver sus time, Slation 4; vertical velpeity versus time, Station 5; Shot Priscilla 45
3.12 Vertical velocity versus time, Station 6, Shot Priscili 46
3.13 Horizontal velocity versus time, Station 6; vertical velocity versus time, Station 7; Shot Priscilla 47
3.14 Vertical displacement versus time, Stations 1, 2 and 3, Shot Priscilla 48
3.15 Vertical and horizontal displacement versus time, Stations 4 and 5, Shot Priscilln 49
3.16 Vertical displacement versus time, Station 6, Shot Priscilla 50
3.17 Horizontal displacement versus time, Station 6; vertical displacement versus time, Station 7; Shot Priscilla 51
3.18 Vertical stress versus time, Stations 1 and 2, Shot Priscilla 52
3.19 Vertical stress versus time, Station 3, Shot Priscilln 55
3.20 Vertical stress versus time, Station 4, Shot Priscilla- 53
3.21 Horizontal stress versus time, Station 4; vertical stress versus time, Station 5; Shot Priscilla 55
 56
3.23 Vertical and horizontal stress versus time, Station 6, Shot Priscill. 58
 59
3.25 Travel-time data, Shot Point 1, Frenchman Flat 60
3.26 Travel-time data, Shot Point 2, Frenciman Flat 60
3.27 Travel-time dath, Shot Point 3, Frenchman Fla 62
3.28 Refraction survey, travel-time data, and wave front diagram, Frenchman Flat 63
3.29 Refraction survey, short-span instrument array, Frenchman Fiat 64
4.1 Schematic diagrams of vertical acceleration and velocity wave forms 66
4.2 Uncorrected and corrected vertical velocities,
4.3 Vertical velocity versure, Tumbler Shet 1 ---nnd range, Tumbler Shot $1,5-$ foot depth 68
68
4.4 Air-blast time of arrival, Shot Priscilla, and seismic
4.5 Earth acceleration versus depth, Shot Priscills 70
4.6 Astenmation of vertical acceleration with depth, Nevada Test Site (power law attenuation) 71
4.7 Attenuation of vertical acceleration with depth, Nevada Test Site (exponential law attemuation)- 72
4.8 Attemuation of vertical acceleration with depth, Nevada Test Site 73
4.9 Attcmution of downward velocity with depth, Nevada Test Site 73
4.10 Increase in vertical velocity rise time with depth, Frenchman Flat 74
4.11 Overpressure, particle velocity, carth stress, normalized to maximum value, Stations 1 through 3, Shot Priscilla -- 75
4.12 Overpressure, particle velocity, earth stress, normalized to maximum value, Stations 3 and 4, Shot Priscilla 75
4.13 Overpressure, particle velocity, earth stress, normalized to maximum value, Station 4, Shot Prisicilla- 76
4.14 Overpressure, particle velocity, earth stress, normalized to maximum value, Stations 5 and 6, Shot Priscilla 78
4.15 Overpressure, particle velocity, earth stress, normalized to maximum value, Stations 6 and 7, Shot Priscilla 79
4.16 Attenuation of vertical displacement, Feenehman Flat-- 80
4.17 Maximum earth stress versus gage depth, Shot Priscilia- 80
4.18 Evarth straln versus depth, Shot Priscilla 84
4.19 Vertical acceleration, Frenchman Flat, 5-foot depth 85
4.20 Vertical aeceleration, Tumbler Shots 1 and 2, 5-foot depth 85
4.21 Vertical accelcration, Tumbler Shots 2, 3, and 4, 5-foot depth 86
4.22 Vertical acceleration at 5 -foot depth versus ground range, Tumbler 86
4.23 Vertical acceleration, Jangle $\mathrm{HE}-4$, 5 -foot depth 88
4.24 Vertical acceleration, Jangle S 88
4.25 Vertical acceleration, Project Mole, Nevada sand and gravel mix, 5-foot depth 89
4.26 Vertical acceleration, Project Mole, Utah dry chay, 5-foot depth 89
4.27 Vertical velocity, 5 -ioot depth, summary of superseismic data 90
4.28 Vertical velocity, Tumbler Shot 1, 5 -foot dcpth 90
4.29 Vertical velocity, Tumbler Shot 2, 5-foot depth 92
4.30 Vertical velosity, Tumbler Shot 3, 5-foot depth 92
4.31 Vertical velocity, Tumbler Shot 4, 5-foot depth 93
4.32 Vertical velocity, Frenchman Flai, 5 -foot depth 93
4.33 Summary of vertical displacement, Nevada Test Site 94
4.34 Summary of reed-gage data (displacement spectra), Nevada Test Site 94
4.35 A. linear, single-degree-0 -freedom system 98
4.3E Schematic diagram of ground particle velocity 98
4.37 Schematic diagram of velocity spectrum 98
4.38 Strot Priscilla vertical displacement spectra 100
4.39 Shot Priscilla horizontal displacement spectra 102
4.40a Verifical velocity spectra, 5-foot depth, Shot Priscilla 103
4.40b Vertical velocity spectra, 10 -foot depth, Shot Priscilla 104
4.40c Vertical velceity spectra, 275 psi , Shot Priscill2 105
4.40d Vertical velocity spectra, 100 psi, Shot Priscilla 106
4.412 Horizontal velocity spectra, 275 psi, Shot Priscilla 107
4.41b Horizontal velocity spectra, 100 psi, Shot Priscilla 108
4.42 Shot Priscilla vertical acceleration spectra 109
4.43 Normalized vertical velocity spectra, Priscilla 5 -foot depth 110
4.44 Normalized vertical velocity spectra, Priscilla 10 -foot depth 110
4.45 Normalized vertical velocity spectra, Priscilla 50 -foot depth- 111
4.46 Normalized horizontal velocity spectra, Priscilla 10-foot depth 111
4.47 Normalized horizontal velocity spectra, Priscilla 50-foot depth 113
4.48 Stress-strain curves, undisturbed soil, Frenchman Flat 113
4.49 Project 1.4 constant ratio of applice stress, triakiai tests, undisturbed soil, 50 -foot depth 114
4.50 Stress-strain diagram, Station 4, Shot Priscilla 115
4.51 Stress-strain diagram, Station 6, Shot Prisellla 115
C. 1 Typleal velocity-time wave forms from Types a, b, or c acceleration-time wave forms 129
129C. 2 Uncorrected and corrected vertical velccities---.-
Tumbler Shot 1, 5-foot depth 130
D. 1 Positive overpressure impulse versus peak overpressure- 132
D. 2 Positive overpressure duration versus peak orerpressure 132

SECRET

Chapter 1

INTRODUCTION

1.1 OBJECTIVES

The objectives of Project 1.4 were to: (1) measare underground effects of a nuclear alr burst as they varied with time, depth, and ground range, particularly in the region of high pressure; (2) use these measurements to furaish input data to other projects; and (3) analyze these dath in combination with the results of other tests to establish criteria for the prediction of underground effectro.

The quantities measured were earth acceleration, earth stress, and earth strain
In addition, to obtain more information on the test medium, seismic studies were performed it Frenchman Flat.

1.2 BACKGROUND

Underground effects of a muclear air turst, as opposed to underground effects of an uncerground burst, have not been extensively investigated. The most compiete full-scale study of these effects was on Operation Upshot-Knothole (Reference 1), when detalled measurements of earth acceleration, stress, and strain were made at one depth and at ane ground range on two shots and when measurements of earth stress were made at three depths at several ground ranges on the same shots. On Operation Tumbler (Reference 2), earth acceleration was measured on four shots; measurements were made at two depths an one shot and at three depths at two ground ranges on all four shots. Only one of these shots was in Frenchman Flat; the other three were in the Yucca Flat T7 area, where geological conditions were conisiderably different. All these measurements were made at pressure levels considerably lower than the regions of present interest. Small-scale studies of similar phenomena conducted by Sanford Research Institute (SRD on Project Mole (Reference 3) and by SRI on the high-explosives series of Operation Buster-Jangle (Reference 4) provided little useful information; the limited frequency response of the instruments used resulted in under-registration of the phenomena. Therefore, extrapolation of these small-scale results to full-scale effects was probably not useful.

Pather extensive small-scale and full-scale studics of underground effects of underground high erplosives have been conducted, but the transmission and loading mechanisms under highexplosive test conditions differed so markedly from those of the conditions of this project that extension of their results to these problems was difficult if not impossible.

Requirements have been set up for criterla for protective construction against large air and surface bursts in the pressure regions of 100 psl and above. Such requirements imply that, wherever possible, underground construction must be used for maximum protection. It is believed that most of the loading of underground structures in these pressure regions from such shots will be produced by the air-blast slap on the surface in the immediate vicinity of the strueture (local effects), rather then by energy transmitted through the cround from the regions eloser to ground zero (remote effects). This project was established to obtain quantitative data on underground phenomena in these regions and to explore these phenomena sufficieatly to permit at least a tentative application of the results to similar effects in soils other than those characteristic of Frenchman Flat. Because of limitations imposed at the Nevada Test Site (NTS),

It was not possible to plan a large surface shot; therefore these studies were based on the effects of a moderately large (35 to 40 kt) atr burst.

A compicte description of the ground motion Induced by air blast from a hith-explosive or nuclear detonation requires spatial and temporal specification of koth the horizontal radial (hereaiter relerred to simply as the horizontal component) and vertical components of: (1) particle acceleration; (2) particle velocity; (3) particle dispincement; and (4) earth strain. Theoretically, only one of these need be presented alons with earth stress since any one of the first three may be derived from the other by differentintion or integration with respect to time, and strain may be found by differentiation of displacement with distance and vice versa. Together these parameters form a redundant set of data since the relationship between them is simply one of geometry. On the other hand, if the medium exhbits inciastic behavior, the relationsbip of stress to particle velocity, for exmple, requires a great deal more knowledge than is now available. Furthermore, if the medium is strain-rate sensitive (as soll is suspected to be) or possesses visco-elastic properties, then stress depends not only on the instantancous values of strain and/or particle velocity but on their past history as well.

From a practical standpoint, specification of ground motion as a single parameter is seriously limited by the small number and low density of observations made on any one experiment and also by the inherent complexity of soil-particle motion compared with that of air. At present, ground motion must be specified as positive and negative peak valucs, time durations, and representative pulse shapes. Hence, salient features of acceleration, velocity, displacement, and strain may be lost. II these sallent features are required, as in computation of response spectrum (see Chapter 4), it is necessary to refer to the original records.

In seeking 2 valid correlation of groumd motion data with air blast input data, answers to several fundamental questions are required. These may be set forth as follows:

1. What relationships are to be expected between the various elements of ground motion and air-blast inpat? How are these relationships modiried by soil properties and by variation of soll properties with depth?
2. Are the abcve relationships expected to vary with yield of the device, ground range, and/or stress level? II so, are these variations of major importance?
3. For a particular test area, i.e., a rehtively fired set of soil properties, are data from various expertments internally consistent?
4. Do systematic differences in the correlations appear when data from one test area are compared with those from another? Are these differences consistent with known variations of soil properties?

Obviously the answers to Items 1, 2, and 3 depend a great deal on theoretical knowledge of the problem since the number of measurements involved are not sufficient to form an independent empirical evaluation of all factors involved.

1.3 THEORY

Adaption of historical theories of the propagation of stress through soil is limited in that either (1) flows are slow under applied loads or stresses (soil statics), or (2) stress waves are of low intensity (exploration and carthquake sensmology). The present need is for theorics and special experiments that consider stress waves of high intensity and rapid rates of loading.
1.3.1 Models for Soil Reacting to Stress. In this section are reviewed the well-known mathematical models (Figure 1.1) for solids which are subjected to stress, and the limitations and range of applicability of these models are described.

Linear Elasticily: Statics. For the study of small strains, linear elasticity may be a satisfactory model (Column 1 of Figure 1.1). In this model, soil is assumed to act essentially as a linca: spring supporting a mass. Because of the success of this model in studying complicated probsems involving steel, it has received a tremendous amount of attention.

The theory of elasticity wittout further qualification may be understood to mean a theory based on the assumption that there is a unique relationship between stress and strain; more
explieitly, that for the material unier consideration, each component of stress can be calculated solely from a krowledge of the local stralin. This assomption is believed to be false for all known materinls; but it is a useful approxdmation. In actual practice, the previous history of the material, the rate of strain, and even the derivative of the rate of strain can affect the values of the stress at each point. Spectacular examples of dependence on these quantitics are

Figure 1.1 Typical stress and strain diagrams for various models of soil behavior (sudden stress).
given by bouncing putty, bread dough, natural rubber, and synthetic plastics.
The complications or modifications of pure (linear) elastic theory which must be considered can be separated into two classes (Table 1.1). The first class is the set of complications in space, e.g, vertical anisotropy. The second class is the set of complications which are intrinsic in every cobic millimeter of the soll. Certainly the two types of complications can be combined: viscosity of soil can change with depth, etc.

Monlinear Elasticity. It is possible to conceive of a substance in which the Lame' constants, or (since they are related) in which Young's modulus and Poisson's ratio, depend on the strain. A simple exmple of such a substance is a spring which becomes stifier in compression. A helical spring will exhibit this characteristic when it closes coil to coil.

For a spring which becomes stiffer with increasing strain, the mathematical model is that of a substance which consists of various fibers, some of which offer no resistance to strain until the strain reaches a finite value. A corresponding model is possible for a spring which becomes less stiff with increasing strain. These models can even be combined to give a model of a substance, the stiffness of which first decreases and then increases with increasian train. For all these models, the steposition is that the strain is emmpletely recovered when stress is reliered. These models can probaily be used sucensfilly for certain analyses; since they are tou simple
to explain certain other experimental results, they seem not to have been used cxtensively in the itterature.
plazticity. By nonllnear behavior ts meant usually a medium which has propertles different even from those of the paragraph above. II a solld undergoes permanent deformation or set when it is strained, it is said to be plastic (clay, for exnmple). A schematic stress-strain relation for a plastic material is that of Figure 1.2.

This dlagram is slmilar in some respects to Figure 1.3 which is a stress varsus strain curve determined from dynamic measurementri obtalned in typical slity clay soll.

In Figure 1.2, the matcrial is called pericetly plastic if $A B$ is a horizontal line and $O A$ and BC are parallel straight lines. Such a matertal betraves as a linear elastic material with no per-

TABLE L.1 REFINEMENTS OF LINEAR ELASTIC THFORY

Complleations in Space	Complleations Intrinsic to the aledium
Space-Dependerit Velocities	Nonlinearity
Interfaces	Viscosity
Free Surfnces	Visco-Elasticity
Layering	Untrinsic Anisotropy
Refractions	(as in crystals)
Redections	
Interference	
Lenses	
Boalders	
Inhomogeneities	

manent set if the stress remains below 2 yield valne; the stress can never exceed this gield value; when the yield value is reached, the material flows plastically. A more general curve, such as that of Figure 1.2 would be obtained by postulating a model with several fibers; each fiber is perfectly plastic, but the fibers bave different yield values.

Viscosity. If is convenient to study the propagation of waves in a plastic suostance by assuming that a certain amount of strain energy is dissipated at the wave frout. One possible mode of dissipation, which seems physically reasonable, is that the rate of loss of energy de-

Figure 1.2 Schematic stress-strain relation for 2 plastic material.
pends on particle velocity; this is viscous friction. The mechanical analog for this mode is that of a spring and dashpot in parallel (see Column 2 of Figure 1.1). For this model, the attenuation per cycle is a function of the frequency.

Visco-Elasticity. If stress is applied to a sample of soil rapidy and then suddenly removed, the graph of strain against time is like that in Column 3 of Figure 1.1. A piausible model is that at the top of the column. The upper spring and dashpot allow for permanent set and rapid relief of stress; the spring and dashpot in parallel allow for gradual relief of the remaining portion of stress. Indeed, any number of parallel spring-dashpot units (Voigt units) can be connected in series to make a still more complieated mociel. The model in question can be thought of as a system of three Voigt units in series. The dashpot constant in the first unit is zezo: it is cffectively a spring alone. The spring constant in the second unit is zero: it is effectively il dashpot alone. In the third unit, the spring constant and the dashpot constant are both different from zero.

Solld Friction. In a solid frletion model, (Column 4, Figure 1.1) dissipation of enerby is assumed to depent on particle displacement but not on particle veloelty. The attenuation per cycle is thas independent of the frequency. Certain laboratory expertments of Born (Refercnec 5) on oven-dried rocks support this model. For wet rockes, Born shows that viscous as well as solld friction damplng is present. This result will probably be true for clay soll as well. In the model for solid iriction used by Born, the damplng torce is taken to be proportional to displacement from the nevtral position. This is not stated by him, but can be inferred from the formulas which he uses. This kind of damping is also termed structural damping-

Other Mathematical Models. Besides the possibllity, already alluded to, of using more than three Volgt units in sertes, the above schemes are not the only ones that bave to be considered in malding mechanteal models of the belavior of soil. Unfortmately soil is not isotropic. The most common variation in properties which it is necessary to take inte account is horizontal hyering. For exmple, there can be horizontal layers, in which seismic velocities are widely differcat. \boldsymbol{n} is ircquently truc also that in any one stratum the horizontal velocity is not the same as the vertical velocity.

The propagation of waves in a layered medium is 2 special topic. Some wave paths which enter the medium can be reiracted and returned to the suriace. Even the most straightforward froblems in wave propagation in a layered (itnear) elastic medium are difficult.

Tabie 12 gives practical limitations of some of the theories which are discressed here. The table shows two thirgs: (1) no single, simple model will explain all the phenomena observed when shock waves pass through soll; and (2) the model to use in studying particular types of

Figure 1.3 Actual record of stress versus strain in typical süty clay.
problems must be a compromise between the finthfulness with which one wants to po:tray all elements of soll behavior and the economics of producing many numerical solutions. This is to say that the least complicated model which will give reasonabiy good agreement with experimental facts is the model to use. However, some rudimentary numerical solutions will always be necessary before one can choose the simplest and yet the most appropriate model for a given problem.
1.3.2 Homogencous Elastic Solid. Within the framework of present theoretical kenowledge, several postulated relationships derived from analysis of a homogencous clastic solid can be set down (Rcference 6).

The assumptions under whleh this annlysis was derived are as follows. First, the plan radius of curvature of the air-blast wave is large compared with the depth under investigation so that induced ground motion may be regerded as two-dimensimal. Second, it is assumed that the air-

TABLE 1.2 PHENOMENA bXPLALNED BY VAHJOUS MODELS OF SOLL BEILAVIOR

Model	Dissipation of Encergy	Permanent Set	Retura of Wave Paths to Surface	Dispersion of Surince Waves
Lipear Elastic (Lsotropic medium)	No	No	No	No
Noalinear Elastle (Isctropic medium)	No	No	Yes*	Yes*
Elastic with Vertical Anlsotropy: (Ineluding discontinuous layers)	No	No	Yes	Yes
Solld (structiral) Friction	Yes	No	No	No
Viscosity	Yes	No	No	No
Visco-Elastic	Yes	Yes	No	No

-These eacries imply possible explanation of the phenomena, espectaily in conpection with waves of high stress.
blast wave of Invariant magnitude is moving at a constant velocity, U , and that sufficient time has elapsed so that a steady ground disturbance pattern appears to an observer fixed in the coordinates of the moving blast wave.

An elastic solid exhibits two wave speeds: one corresponding to the propagation of waves of dilatation (or compression) C_{L}, the seismic L (longitudinal) wave velocity, and another corresponding to propagation of components of rotation, C_{S}, the seismic S (transverse, shear) wave velocty. Three distinct theoretical cases are present in the above situation,

1. $\mathrm{U}<\mathrm{C}_{\mathrm{S}}<\mathrm{C}_{\mathrm{L}}$, the subseismic case.
2. $\mathbf{C}_{\mathbf{S}}<\boldsymbol{J}<\mathrm{C}_{\mathrm{L}}$, the transselsmic case.
3. $\mathbf{C}_{\mathbf{S}}<\mathrm{C}_{\mathbf{L}}<\mathbf{U}$, the superseismic case.

The theory in Cases 1 and 2 says that the ground motion outruns the alr-blast wrave; the earth moves dowaward and away from ground zero. Although ground motion outrunning is observea in the field, the initial motion of the earth is generally upward and away from ground zero. This motion is the result of refraction of the wave front due to the vertical gradient of selismic velocity. The overpressure at which outrunning occurs depends on the device yield and the seismic velocity gradient (Section 1.3.3). For the yields and seismic velocity gradients at the NTS (Frenchman Flat), this overpressure is approximately 10 psi.

At higher overpressures, the blast-wave velocity is large enough so that it moves superseismically (Case 3) and the ground motion lags progressively behind that at the surface as in Figure 1.4. At the surface, the vertical ground motion and the blast wave are related simply, viz.,

$$
\begin{aligned}
& A_{V}=\frac{1}{\rho C_{L}} \frac{d P}{d t} \cdot \Phi\left(\frac{U}{C_{L}}\right) \\
& U_{V}=\frac{P}{\rho C_{L}} \cdot \Phi\left(\frac{U}{C_{L}}\right)
\end{aligned}
$$

$$
\mathrm{D}_{\mathbf{V}}=\frac{1}{p \mathrm{C}_{\mathrm{L}}} \int \mathrm{Pdt} \cdot \oplus\left(\frac{\mathrm{U}}{\mathrm{C}_{\mathrm{L}}}\right)
$$

Where A_{V}, U_{V}, and D_{V} are the vertical particle acceleration, vertical paricie velocity, and vertical particle displacement; ρ is the soll denstty; P is overpressure; and t is time. The function, Φ (derived from results in Reference 6), is shown in Figure 1.5 and is nearly unity for $J / C_{L}>1.5$. At small depths, one would expect the peak negative displacement to be proportional to the positive overpressure impulse and the peak negative velocity to be proportional to the peak overpressure, $\mathbf{P}_{\text {Mr }}$ - (The usual convention is preserved; positive motion is upward and outward [away from ground zero] and negntive motion is downward and inward [toward ground zero].) The peak acceleration depends on the overpressure wave form and for an ideal shock wave would be infinite. In reality, all shocks have a finite rise time, t_{r}, so chat

$$
A_{V} \approx \frac{1}{\rho C_{L}} \cdot \frac{P_{M_{1}}}{t_{\Gamma}}
$$

If one postulates that all nonprecursor shocks have approximately the same rise time, then one might erpect the acceleration to be also proportional to the peak overpressure.

These simple statements form the basis of correlation of near-surface ground motion. Attemation of ground motion with depth must at present be treated empirically.
1.3.3 Effects from Remote Sources. When the propagation velocity of the air blast is larger than the compresstonal (L) wave velocity of the ground, signals will not be observed underground prior to arrival of the wave front (Figure 1.4). In a homogeneous medium, the wave front will be bent upward at increased depths (Curve a, Figure 1.4); however, if the seismic velocity increases with depth, the wave front will tend to be bent downward (Curve b, Figure 1.4).

As the air-blast velocity decreases with distance from ground zero, the information given the earth will eventally arrive prior to arrival of the direct signal. This may happen either

Figure 1.4 Scbematic diagram of superseisunic wave front.
when 2 near-surface seismic velocity is greater than the air-blast velocity or by ground transmission alung a carved path which dips into the higher velocity, lower earth strata, i. e., by seismic refraction. The former corresponds to the transseismic case (Casc 2), and the initial signal is down and outward as in the superseismic case. The onset of acceleration is, however, more gradual. The latter is distinguished by an upward and outward first signal and is by far the predominant type of outrurning observed at both the NTS and the EPG.

The outruaning signal arriving at a gage by refraction is generally called the air-induced, ground-transmitted wave, or, simply, the remote effect. The sigmal arriving by the direct path as the air blast passes over the gage is called the air-induced, direct wave, or, stmply, the local effect. It is a misnomer to describe only the latter as the air-blast-induced wave
slace both elasses of motion are air-blast indueed, with the only difference being the point of origin and the transmission path. (Sinec the air-Induced remote eifect is due to an cxtended source, it should not be confused with the directly-induced ground motion resulting from an underground detomation.)

Outrunning of the ground wave has considerable lmportance in that the character of the ground motion changes when this occurs. II a seismic refraction survey has been made of the area, the

Figure $1.5 \mathbf{\Phi}$ versus $\boldsymbol{U} / \mathbf{C}_{\mathrm{L}}$ and Poisson's ratio.
technique of constructing the ground motion arrival time distance is simple (Flgure 1.6).
In the lower portion of Figure 1.6 is shown the measured refraction survey of Frenchman Flat made curing 1957. The concave portion of the refraction arrival time curve is due to the increase of seismic velocity with depth. The air-blast arrival curve is first constructed. At each point along this curve 2 signal is generated which travels outward at the rate prescribed

Figure 1.6 Construction of ground motion arrival time curves, Tumbler Shot 1, 5-foot depth
by the reiraction arrival curve, e.g., the signal from ground zero. From the envelope formed by superimposing the arrival time curves for all signals generated by the air blast, the carlicst arrivals are selected. This curve then defines the ground range at which outrunning occurs, e. g., 920 feet in Figure 1.6.

The measured air-blast and ground motion arrivals at 5 -foot depth for Operation Tumbler Shot 1 (Reference 2) are shown in Figure 1.6. Before outrunning, the ground motion lags the air blast slightly since the air blast is superscismic. After outrunning, the ground motlon pre-
cedes the calcuinted values by a small amount as the refracted wave travels upward to the surface. The differences are not lmportant at 5 -foot depth; bowever, at mueh preater depths they will be sigpificant. The 8,300-ft/sec propagation velocity ts the result of refraction from the basement rock. The 1957 refraction survey did not cxtend sufficiently to pick up these arrivals.

From seismic velocities associated with strata of known thickness, the refraction curve may be reconstructed. Details of this procedure may be found in any text on geologecal exploration.

As the device yield increases, the near-surface selsmic velocity becomes less important in the calculation of outruning. The seismic velocities at depth play the domimant role, and hence the overpressure at which outrunning woald be expected to occur will generally increase as device yicld increases. For surface bursts over shallow weathered hyers or ior large yield devices detomated over deep wenthered layers, the approximate values of Table 1.3 apply. This indication of carly outrunning for the most common materials focuses more than casual attention to the behnvior of the ground-transmitted wave.

1.4 SEISMIC MEASUREMENTS

The clastic properties of a soil are related to and may be determined from an accurate knowledge of the seismic velocitics. The main elastic waves which are of interest in this program

TABLE 13 APPROXIMATE OVERPRESSURSS AT WTICL OUTRUNNING OF GROUND WAVE OCCURS, IARGE YIELD SLRFACE BURSTS

Formation	Overpressire	Formation	Overpressure
	psi		psi
Alluvium	<40	Shale	650202,500
Gravel, dry	10 20 100	Limestone	$>1,500$
Gravel, wet	40 to 500	Aleramorphic	$>1,000$
Sandy Clay	100 to 500	Granite	$>3,000$
Sandstone	500 to 2,000		

are longitudinal or compressional waves (L) and transverse or shear waves (S). Other seismic waves that may or may not be of interest are the Rayleigh and Love waves.

The compressional wave (L) is characterized by an in-line particle motion with particle displacement parallel to the direction of propagation. Of the elastic waves, the compressional wave has the highest velocity.

The shear wave (S) is also linear, iout the direction of particle motion-is perpendicular to the direction of propagation. The shear wave, because of its property of polarization, can be further subdivided into $\mathrm{S}_{\underline{I}}$ and S_{U} type depending on whether the displacement is horizontal or vertical, both waves traveling with the same velocity but lower than the L wave velocity.

The Rayleigh wave (R) is a surface wave which is a combined compressional and shear wave with a plane of oscillation at right angles to the surface and parallel to the direction of propagathon. Its velocity is dependent on frequency and is dispersive. Shear-wave velocity for shallow depths may be estimated from these surface-wave velocities. An approximate relation between C_{S} and $\mathrm{C}_{\boldsymbol{R}}{ }^{\text {is: }}$

$$
C_{R}=[0.87+0.8 \sigma] C_{S}
$$

The elastic properties of a solid may be described by two elnstic constants. Three of these constants are the bulk modulus (k), the modulus of rigidity (u), and Poisson's ratio (σ). The bulk modulus (k) is defined as the ratio between applied pressure and fractional change in volume for \mathbf{a} uniform hydrostatic compression. The rigidity modulus (u) is defined as the ratio between shear stress and shear strain. Poisson's ratio is defined as the ratio between lateral contraction and longitudinal extension of a solid with free lateral surfaces. It is related to (k) and (u) by

$$
\sigma=1 / 2 \frac{k-2 / 3 u}{k+1 / 3 u}
$$

The compresslomal and shear-wave velocities C_{L} and C_{S}, measured by seismele methods, are

Figure 1.7 Selsmic velocity ratios versus Poisson's ratio.

$$
\begin{aligned}
& C_{L}=\left[\frac{K+4 / 3 u}{\rho}\right]^{1 / 2}=\left[\frac{E(1-\sigma)}{\rho(1+\sigma)(1-2 \sigma)}\right]^{1 / 2} \\
& C_{S}=\left[\frac{u}{\rho}\right]^{1 / 2}=\left[\frac{E\left(\frac{1}{\rho}(2(1+\sigma)\right.}{\rho}\right]^{1 / 2}
\end{aligned}
$$

(Equation 1.2)
(Equation 1.3)

Where ρ is the density and E is Young's modulus. Inserting Equations 1.2 and 1.3 in Equation 1.1

$$
\sigma=\frac{1-2\left(C_{S} / C_{L}\right)^{2}}{2-2\left(C_{S} / C_{L}\right)^{2}}
$$

For perfect fluids, $u=0, C_{S}=0$ and $\sigma=I_{2}$.

Gravel	0.47	Reference 7
Locss, dry	0.14	Reference 7
River Deposils	0.45	Referenee 7
Clay. dry	0.47	Referener 8
Clay, wet	0.38	Keference 8
Limestone	0.88	Etefereace 7
Granite	0.35	Reference 7
Sandslone	0.12	Reference 7

For incompressible materinls, k becomes harge and $\sigma=1 / 2$. For elastic solids, $0<\sigma<1 / 2$. Values of σ for some common materials are shown in Table 1.4.

Chapter 2
 PROCEDURE

Project 1.4 participated an Sbot Priseilla of Operation Plumbbob. Many other projects participated on this shot, including Project 1.3, which provided input data for this project; and Project 1.5, تhich made measurements slmilar to this project. There were also a number of structural projects for which Project 1.4 was designed to provide free-field tuput data.

2.1 Predictions

In planning an experiment of this type, it is necessary to predict the values of the functions to be measured to an accuracy suffictent to allow the sensitivity of each channel of instrumentation to be set closely enough that satisfactory deflection may be obtained. For best resulrs these values should be within a factur of two of the true values. A greater range is acceptable on channels where dual-sensitivity galvanometers are used. Predictions are also important in the selection of gage ratings to ensure that gages are not over-ranged, thereby fintroducing nonlinearities. This section (2.1) is presented as written before the test; it has not been modified in the light of the actual data obtained.

Directly applicable data, taken in the Frenchman Flat area on underground effects of aboveground shots, are limited to those from Tumbler Shot 1 (Reference 2), and Upshot-Knothole Shots 9 (Reference 1) and 10 (Reference 9). The majority of these data were taken from shock waves at relatively low pressure levels, exeept some from Opshot-Knothole Shot 10 at levels up to 100 psl with precursor wave forms. Reference 10 gives some selsmic velocities in the Freschman Flat area.
2.1.1 Input Predictions. Subsurface phenomena are assumed to be a result of the overpressure appearing at the surface in the immedtate vicinity of the station. Table 2.1 shows some of the predicted parameters of interest obtained from analyses carried out on the basis of previous data (Reference 11).
2.1.2 Earth Stress. In general, vertical earth stress may be assumed to be the same as the applied pressure. There will be a small change in the slope of the front with depth. At Stations 1, 2, and 3, the sharp decay of overpressure behind the front may eat away the peak slightly, rith an estimated decrease of 25 percent, which is insignificant for range-setting purposes. Eorizontal earth stress is assumed to one fifth the vertical. This is consistent with some of the previoufexperimental experience and with probable values of Poisson's ratio.
21.3 Seismic Velocity. Seismic velocity is not important per se, but it is important in prediction of strain and acceleration. If one assumes that $\rho=100$ pcf and that $\sigma=0.25$, then with
 part of the wave), or $\mathbf{C}_{\mathrm{L}}=55.6 \mathrm{P}_{\mathbf{M}} / \mathbf{V}_{\text {maxp }}$ where $\mathbf{V}_{\text {max }}$ is the peak particle velocity at the ground surface.

Data from Tumbler-Snapper Shot 1 and Upshot-Krothole Shot 9 in the Frenchman Flat area give average value of $C_{[}$of $730 \mathrm{ft} / \mathrm{sec}$ at 1 -foot depth, $1,220 \mathrm{ft} / \mathrm{sec}$ at 5 -foot depth, and 2,460 ftisee at 50 -foot depth. These values for C_{L} at the three depths of measurement covered by the data are represented best by an exponential form of empirical equation:

$$
C_{L}=750 y^{0.30}
$$

Where y denotes the vertical dimension.
Reference 10 gives the following selsmic velocities in the Frenchman Flat area:

Depth. ft	Velocity, ft/sec
to to 10	1,200
10 to 175	2,600
175 to 650	3,600
Below 650	10,000

While these values match well the average C_{L} results at 5 and 50 feet, they show no difference between 1 and 5 feet. This is unrealistic; particularly since the abrupt velocity change at 10 feet is not consistent with the profile of soil abserved \ln excavations.

It must be observed that these data were derived from a refraction survey, where the pri-
table 2.1 shot priscilla mput predictions

Starion	Ground Range	Arrival Time	Horlzontal Velocity	Wave Form	$P_{\text {max }}$	P_{1}	P_{2}	T_{1}	T_{2}
	ft	msec	fi/sec		psi	Psi	Psi	msec	msec
1	450	99	6,400	0	750	750	-	0	-
2	550	117	5,000	0	600	600	-	0	-
3	650	137	6,700	0	450	450	-	0	-
4	750	152	6,100	1	320	280	40	5	7.5
5	850	167	5,600	1	200	110	120	5	125
6	1,050	205	4,800	1	100	G0	70	5	20
7	1,350	275	3,900	1	50	30	40	5	20

mary data were arrival time versus ground range from small shots. When these primary data are reconstructed from the reported conclusions, they fit well an empirical exponential equation,

$$
t_{x}=0.0015 x^{0.80}
$$

(Equation 2.2)
Where x denotes the horizontal dimension. According to Blondeau's derivation (Reference 12), this would correspond to a vertical variation of velocity,

$$
C_{\underline{L}}=1,160 \rho^{0.2}
$$

(Equation 2.3)
There is a considerable difference between Equations 2.1 and 2.3, but the best compromise, which does serious violence to neither, appears to be:

$$
C_{L}=1,000 y^{0.25}
$$

(Equation 2.4)
21.4 Earth Strain. With the same assumptions used for calcuiations of \mathcal{C}_{L}, it may be shown that vertical strain, S, may be expressed as:

$$
\begin{equation*}
S=55.6 P_{M} / C_{L}^{2}=5.6 \times 10^{-5} P_{M} y^{-0.5} \tag{Equation2.5}
\end{equation*}
$$

2.1.3 Earth Acceleration. Data from Operations Tumbler-Smapper and Upshot-Knothole of the average values of $\mathbf{P}_{\mathrm{M}} \mathbf{d}^{\prime}$ A (ratio peak overpressure in psi to peak vertical accelcration in g-units) fit well the exponential equation,

$$
A=1.64 \mathrm{P}_{\mathrm{M}} y^{-0.85}
$$

(Equation 2.6)
This is for shock-wave input at pressure levels between 10 and 25 psi. tr the rise time were
constant, A might be expected to viry taversely as the seismic velocity, he., In the same way as $V_{\text {max }}$

From Equations 2.1 and 2.5,

$$
\mathbf{V}_{\max }=0.056 \mathrm{P}_{\mathrm{M}} \mathrm{y}^{-0.25}
$$

(Equation 2.7)
From normal mechanles, if one assumes the rise of velocity to resemble a half cosine-wave,

$$
A=0.0975 V_{m a x} / T_{\mathbf{R}}
$$

(Equation 2.8)
From Equations 2.6, 2.7 and 2.8, then

$$
\mathbf{I}_{\mathbf{R}}=0.0033 \mathrm{y}^{0.6}
$$

(Equation 2.9)
In other words, the steeper slope of acceleration with depth is explained by the increase of T_{R} with depth. Since T_{R} is the duration of the rise of particle velocity, V, it should also be the duration of the first acceleration pulse. Dath on T_{R} yield average values of $3.25,7.5$, and 30 msec at 1,5 , and 50 feet, respectively, corresponding to the exponentiai $T_{R}=0.00325 y^{0.57}$, a negligible diffcrence from Equation 2.9.

Equation 2.6 cau be used to predict poak acceleratlons at Stations 1, 2, and 3. At subsequent stations, however, T_{R} is affected by the inite rise time of the input-pressure wave. In the case of a precursor-type wave form, the rise time of the input wave can be quite long. If one can add geometrically, the tinluence of depth and input pressure upon rise time, ($T_{R}=\sqrt{T_{y}^{2}+T_{p}^{2}}$), then one may calculate T_{R} for each depth and calculate A from Equations 2.4 and 2.5.

$$
A_{\max }=0.00542 P_{M} y^{-0.25 / T_{R}}
$$

(Equation 2.10)
Horizontal accelerations are arbitrarily taken as one third the vertical. Although experience to date indicates a considerable scatter in this ratio, it appears to be always less than one.

2.2 INSTRUMENTATION

2.2.1 Central Station. All central-station channels of instrumentation used on Project 1.4 were essentially idention to those used on a number of previous projects, including Operation Teapot Project 1.10 (Reference 13). Wiancko 3-kc oscillators supplied carrier power to the transducers themselves and to modified Whacko demodulators. The demodulated sigmal was applied to William J. Miller Corporation oscillograph recorders. Provisions were inciuded for applying automatically a synthetic calibrating signal to each channel immediately prior to zero time to compare the fimal dellection on the record with the deflection produced by the same signal at the time of calibration. An accurate timing sigmal of 100 cps and $1,000 \mathrm{cps}$ was also applied to all recorders simultancously from a single source having a time accuracy of better than 10 parts per milion. This provided means for time correlation of records to a high degree of accuracy. Since the same central station equipment was used for Projects 1.3, 1.7, and 3.5, this time correlntion could be extended to include data obtained on Project 1.4.

The prime power supply for all instruments during the shot was a bank of storage batteries. Suitable converters were used to produce 115-volts ac for components requiring this power source. An individual converter was used for each rectifier power supply, thus minimlzing the possibillty of gross failure due to converter fallure.

On this project, 62 gage channels were connected. Of these, 22 were connected to dualrecording systems, consisting of one galvanometer on each of two recorders. These duml channels were assigned to those gages which were considered to be most important to minimize loss of important diata due to any recorder fallure. On 6 of these 22 channels, one of the galvenomuters used had a natural frequency of 200 cps , and the remadnder had a matural frequency or 300 cps. The channels incorporating one 200 -cps galvanometer vere used on gages where uncertainty of the predicted peak was greatest and where the expected signal was such as not to
be degraded apprechably by the reduced response of the lower frequency galvanometer. Since there was an appreciable difference in the sensltivity of the galvanometers thus used on a single channel, a wider range of input signal could be aecommodated without loss of data (provided both recorders operated properly).

Instruments were powered at sultable times before zero time by Edgerton, Ger mestrausen, and Grier (EG\&G) relny circuits, with lock-in relays controlled by a time-delay relay to continue operation for approximately 1 minute alter zero time, even though EG\&G relays dropped out sooner. Utmost attention was pald to circultry and procedures to insure maximum reliability of operation. Dual-rclay contacts or dual relays werc used wherever feasible.

A multipen recorder was connected to provide a record of time and sequence of operation of various elements so that any failure which might occur could be traced to its source in a posttest study.

The recording shelter was buricd to a depth sufficient to reduce the integrated radiation dosage within the shelter to below 10 r to avoid radiation fogging of the recording parer.
2.2.2 Stress Gages. The basic earth-stress gage used in these tests was a modification of that oripinally designed by R.W. Carlson for the measurement of static stress in foundations and grades. The gage consisted of two flat circular plates with thin flexible edges attached at the edges so as to be separated by a narrow space filled with oil. A pressure gage was arranged to measure the pressure in this oil as a measure of the actual component of the stress in the medium in which the gage was buried.

Two variations of this gage were used. For the low pressures, a Wiancko variable-reluctance pressure gage covered by a housing was used in an identical construction to those used on previous projects (Reference 3). For pressures above 300 psi , a special diaphragm-type transducer, manufactured by Ultradyne Engineering Comprany, was used in place of the Wiancko transducor (Figure 2.1) This variable-reluctance transducer was electrically similar to the Wiancko, but was mectanically smaller in size so that the projecting housing was smaller.
2.2.3 Strain Gages. The earth-strain gages used were of a new type designed for the parpose and shown in schematic form in Figure 2.2. The gage is shown unassembled in Figure 2.3 and is shown installed in Figure 2.4. Fundamentally, the gage consisted of a linear differential transformer, which measured the ctrange in spacing between two anchors, separated by 2 or 3 feet, set into the side of a large hole before the hole was backfilled. One of these anchors supported the body of the transformer enclosed in a protective housing, and the other carried a light tubular rod, at the far end of which was attached the movable core of the transformer. The position of this core could be adjusted after installation. For callbration, the adjusting nuts could be used as a micrometer by turning them one full turn at a time. The linear differential transformer was connected through a transformer to the normal Wiancko half-bridge circuit by the standard threeconductor cable.
2.2.4 Accelerometers. Accelerometers used were the standard Wiancko variable-reluctance accelerometers used on previous tests (Reference 2). They were enclosed in protective canisters of two types: one type carrled a single vertical accelerometer; the other was used where horizontal as well as vertical measurcments were desired and carried two mutually perpendicular accelerometers.
2.2.5 Instrument Response. The Wiancko gage and its associated recording system was basically flat down to steady-state conditions, due to its design as a carrier-demodulator system. No corrections were required therefore for its low-irequency response. The high-irequency response was limited either by the characteristics of the gelvanometers used or by the dynamic characteristics of the transducers. The (nominal) 300 -cps galvanometers had an undamped natural frequency of 315 to 340 cps and weee damped to bave an overshoot of approximately $71 / 2$ perecnt. This corresponded to a damping factor of approximately 0.65 critical and provided a

Figurc 2.1 Earth stress gage:

Figure 2.2 Schemitic, earth strain gage.
nominal rise time of 1.3 msec . The nominal 200 -cps gelvanometers had a corrcsipondingly longer rise time of approximately 1.8 msec .

The accelerometers varied widely in sensitivity and maximum range and consequently in undamped natural frequency. In general, those used at high-pressure stations and near the surface were low-sensitivity, high-range instruments with a high natural frriguency; and those used at low-pressure stations, particularly at greater depths, were more sensitive instruments with lower natural frequencies. Where the high-range instruments were used, the overall frequency response was limited by the galvanometer response. Where the low-range instruments were used, the limiting frequency response was generally that of the aecelerometer.

The frequency-response characteristics of the Carlson stress gages were difficult to deter-

Figure 2.3 Earth strain gage, unassembled.

Figure 2.4 Earth strain gage, installed. mine implicitly since they were affected significantly by loading of the earth on the gages; however, the basic gage was known to bave a response similar to that of the pressure gage alone. It is believed that the overall response was limited by that of the galvanometers. Similarly, the response time of the earth-strain gages was difficult to ascertain exactly, but measurements indicated that for the short span used the response time was far shorter than the rise times indicated on the final records; therefore, no distortion from this cause was attributed to the gages.
2.2.6 Calibration. Each gage was calibrated in the field after it had been connected to its associated cable and recording equipment and immediately prior to its final installation in the earth. Carlson stress gases were calibrated by the application of direct air pressure. Accelerometers were calibrated by the use of a spin table which produced accelerations up to about 200 g . Where higher aecelerations than 200 g were anticipated, gages were calibrated to that figure in the field, and this caiibration was extrapolated on the basis of linearity checks made previously in the laboratory. Earth-strain gages were calibrated by the introduction of directlymeasured deflections on the gages in place.

In the calibration procedure several deflections ranging from zero to well above the expected
peak (where possible) were applied to each gage In scquence. Ench galvanometer deflection was noted and recorded. In addition, the deflection caused by an artificial sigmal (eal sigmal) injected into the grge elrcuit was recorded. From the former deflection, a calibration curve of deflection versous peak reading could be constructed. The cal slgnal served to correct for any changes of senstitivity of the recurding system between calibration and lue funil test since an tdentical signal was injected on the imal record about 10 scconds before zero time.

2.3 EXPERDIENT PLAN

2.3.1 Gage Placement. Cages were located at several depths in two sizes of holes. At five stations, the holes were 30 inches in dinmeter by 10 feet decp, and at two other stations the boles were 5 feet in dinmeter by 50 feet decp. Stress gages and accelerometers were placed In small excavations in the stdes of the holes, and backfill material was carefully tamped around the gages by mand to ensure proper contact with the formation before the general bacidilling proceeded. Strain-gage anchors were cemented into the walls of the large holes to make good contact with the undisturbed formation and to minimize the effect of the difference between characteristics of the backfill and of the original formation. In addition, every effort was made in backfilling to return the material as nearly as possible to its original condition.

The specifications for preparation of backfill material and for tamping procedures were set up by Project 3.8 (Reference 14) on the basis of laboratory tests conducted at Waterways Experiment Station (WES) on samples of material from the area. These specifications were directed toward restoring the dymmic modulus rather than the density and required careful control of the water content at slightly below Proctor optimum, with somewhat greater than normal tamping elfort. During backilling, control of procedure was assisted by the frequent sampling and analysis of the backrill in the field by Project 3.8. Samples for record were also taken by that project and are reported in Reference 14.
2.3.2 Cage Coding. For identification of channels and recorded traces with their proper gages, 2 systematic coding was adopted. A station number was assigned to each gage station; these mombers were used as a first part of the gage code. The second part of the gage code was a letter indicating the type of measurement. For this project V was used for vertical acceleration, H for horizontal acceleration, CV for vertical stress, CH for horizontil stress, and SV for vertical strain. A third part of the code indicated the depth of the gage (in feet) below the surface.

Typical gage code numbers would then be $3 V 5$ for Station 3 vertical acceleration at 5-foot depth; 1 CV30 for Station 4 vertical stress at 30 -foot depth, etc.
2.3.3 Cage Layout. The gage Layout (Figure 2.5 and Table 2.2) was selected to provide the maximum of basic dath on phenomenology and at the same time to provide mavimum coordimation with other projects. Stations 4 and 6 were placed at ground ranges where predicted peaiss of applied pressure of approximately 300 and 100 psi , respectively, were expected. At these locations, measurements were made of acceleration, stress, and strain, at a number of depths down to 50 feet, ficluding two measurements cach of horizontal accelexation and horizontal stress. The remaining stations were chosen to correspond to aboveground stations of Project 1.3 and to cover a wide range of input pressure levels. At these stations, measurements were made of vertical acceleration and stress at depths of 5 and 10 fect only.
2.3.4 Seismic Measurements. In was considered desirable to obtain data on seismic propagation velocities and thelr variation with depth, particularly in the first 100 feet, to assist in interpretation of final data from this project. To obtain these seismic data, a program was conducted in the area during the preparational phase of operations prior to the shot. Fitzure 26 shows the location of shot holes and lines used in this work. Shot Points 1 and 2 were 200-foot holes, originilly drilled dry, but ilnoded lefore use (Section 2.4). Shot Point 3 wish a similar 100-font hole drilled hater to check the results from the first iwo. In these holes, small charfes

were set off at various depths k, the holes, and geophones were placed near the top of the hole aral at 50 and 100 feet from the hole to measure the arrival times to determine vertical compresslonal wave veloctties.

Shot Point 4 was a 10 -foot hole used in an experimental program in an effort to measure shoar wave velocities. Shot Points 1R, 2R, and 3R were also 10-foot holes used for a refrae-
STA. GR
tion profile to determine horizontal velocitles. In making the refraction profile, the geophone spread was left in one position and the shot point moved progressively out to a final offset of 900 feet from the end of the spread.

Results of these measurements are reported in Chapter 3.

2.4 FIELLD OPERATIONS

Field operations on this project were concurrent with those for Projects 1.3, 3.5, and the instrumentation for Project 1.7 and were performed by the same personnel. A common recording shelter was used, and the data channels were intermingled. In most cases, common cable trenches were used.

At the time the field crew arrived at the NTS, the only construction requirements completed for this project were the drilling of the 50 -foot holes for gages and of two 200 -foot holes for selsmic measurements. The former were protected by local dikes from a subsequent generai flood, but the latter were covered with water for several days.

The recording shelter was ready for occupancy 10 days after the crew arrived at the test site, and equipment was promptly installed. Cable-trenching operations were delayed so that, to meet schedules, it was necessary to start planting and backfilling of underground gages.

Most of these gages were therefore calibrated with cables only partly in place and without the full complement of cables and gages connected.

II is not certain whether this procedere has any cffect on the accuracy of callibrations, but it was certainly not optimum. Calibration and planting of gages and backilling of holes was completed about 8 weeks after project personnel arrived in the field.

Seismic measurements were made as opportunities arose. The two deeg shot holes (200 feet)

Figure 2.6 Seismic locations.
were shot after they had been flooded for several days. To check the possibility that the results were affected by water intrusion, another 100 -Ioot hole was drilled by Project 3.8 and was shot later. Additional seismic shooting was done on a noninterference basis.

The records were recovered irom the sheiter on the afternoon of D-day. The recovery operation required five persons to be in about a $300-\mathrm{mr} / \mathrm{hr}$ radiation field for approximately 20 minutes.

Chopter 3
 RESULTS

3.1 DNTRUMIENTATION PERFORMANCE

Of the 64 gage channels installed on this project, 52 gave usable records, although four records were lncomplete due to cable breaks during the active period of recording. Of the four cables broken, three were associated with the gages at one station (Station 5, 850-foot ground range). The only apparent explamation for this betavior was that the finger cable trenches off the main 8-foot deep trench werc too sballow at this station for adequate protection of the gage cables.

Or the 52 usable gage records, one record (6 CV 20) showed a peculiar wave form indicative of gage overload; although its value was limited, some information may be obtained from this record.

Of the 12 chancels producing no record, six were lost due to Latilure of one oscillograph to poll recording paper throughout the run. This camera ran for about 10 seconds after turn-on (until minus 5 seconds) before the recording paper tore and jammed. The other sir failures were apparently due-to breaks in the cables or faulty cable-plag comnections. Some of these difficulties were detected before the shot, but too late to repair; some were apparently caused by strains or farring introcuced during the backflliting operations. It appears that the straingage design used on this project was particularly susceptible to electrical shorts and/or cable couthuity difficuities. Much of this might be eliminated by an improved cable-connection system.

There was no definite evidence of record disturbance caused by the electromagnetic transient at zero time. All traces remained within the boundaries of the recording paper. Some gages, particularly the stress and intermediate depths, prodiced small deflections which reduced the accuracy of the data obtained.

No evidence of radiation fogging was observed on any of the recordings obthined on this project.
The datz obtained for Project 1.7 was transmitted to the appropriate agency for amalysis.

3.2 DATA REDUCTION PROCEDURES

3.2.1 General. After each gage record was identified on the oscillograms, they were read (inches of deflection of record versus time) with an electromechanical reader, Benson-Lehner "Oscar" Model J. The reader output was fed into an IBM card panch, which produced the data cards. These deflection versus time data cards, along with appropriate calibration cards, were processed by an IBM Model 650 electronic computer. The final reduced data came out in the form of parameter (e. g. , acceleration) versus time listings correspanding to each gage record These listings were then plotted to give data upon which this report is based.
3.2.2 Integration Procedurcs, \boldsymbol{n} was desirable for the earth acceleration versus time records to successively integrate the results to obtain, IIrst, the particle velocity versus time, and second, the particle displacement versus time. It becomes apparent after only a few attempts at this integration process that there is a good deal of judgment involved in obtaining a meaningful result. The maln problems and their solutions are discussed fully in Appendix \mathbf{C} of this report.

Suffice it to say that the integration procedure involved the following operations:

1. Integration of the as-read acceleration-time record to obtain as-read velocity-time.

SECRET

2. Adjustment of the as-read veloeity-lime baseline to oltain zero velocity at an appropriate time; called corrected velocity-time.
3. Adjustment of the acceleration-time baseline to be consistent with the velocity-time adjustment cited in ltem 2 above.
4. Integration of the adjusted velocity-time record to obtain the displacement-time trace, ealled corrected dispincement-time.

As explained in Appendix c, the corrections as applicel usually have little effect upon the asread acceleration, more on the as-read velocity, and most upon the displacement.

The results of the Project 1.4 experiment will be presented in terms of the corrected values only; however, the figures and tables will indicate the magnitude of the corrections (Table 3.1).

3.3 GAGE RECORDS AND TABLES OF RESULTS

Figures 3.1 through 3.24 present the significant portions of the replotted gage recards obthined on this project. Figure 3.1 presents the overpressure-time records obtained on Project 1.3 and represents the input air pressure at the ground surface on this shot. The remaining

Gage	Ground Range	Arrival Time	3nximum Precursor		Maximum		Pasitive Phase Duration	Positive Phasc Impulse	Wave Form
			Pressure	Time	Pressure	Time			
	ft	sec	psi	Stec	psi	sec	sec	psi-sec	
18	450	0.103	None	None	554.2	0.108	CB	-	0
28	550	0.116	39.2	0.118	366.0	0.126	CB	-	1
3 B	650	0.131	31.4	0.134	342-3	0.146	0.169	12.2	1
48	750	0.146	26.0	0.150	228.7	0.175	0.200	10.1	1
SB	850	0.163	25.6	0.166	220.9	0.201	0.237	11.2	1
6 B	1,050	0.201	20.5	0.223	104.0	0.275	0.329	9.2	1
7 B	1.350	$0.268{ }^{*}$	120%	0.308 *	$59.1{ }^{*}$	0.394°	$0.783 *$	6.62*	1

- Sandia (Project L.S) data
figures present acceleration-time, velocity-time, displacement-time, stress-time, and straintime data in that order. Included in these figares are the times of arrival; desiguation of peak values; and where applicable, the air-pressure arrival (AB) at the ground surface over the gage.

All the records are plotted to the same time scale; however, to obtain the best compromise between economy of space and faithful reproduction of the detrils of the records, it was necessary to group the records and use several different ordinate scales.
3.3.1 Overpressure. The pertinent overpressure-time records from Project 1.3 are presented in Figure 3.1, and the data are listed in Table 3.1. Referring to the pressure-time plots, it is apparent that, although a definite precursor wave formed on the Shot Priscilla main blastline, the ground level overpressure at Station 1 (450 -foot range) was characterized by a clear (Type 0; see Appendix A) wave form. However, the longer than normal rise time of about 5 msec gave some evidence of thermal disturbance at this station. The record at Station 2 (550foot range), although incomplete due to a cable break, showed that the precursor wave formed between the 450- and 550-foot range. Subsequent pressure records documented the development of the precursor wave in detail. One of the most significant characteristics of this set of records with respect to ground motion was that the rise time to peak pressure associnted with the main puise increased with increasing ground range and decreasing peak pressure. Also as the distance from ground zero increased, the precursor wave front led the main sheck by longer and longer times.
3.3.2 Earth Acceleration. Figures 3.2 throu:h 3.6 present the replotted records of earth aceeleration data obtioned on Project 1.4. In these figures, the air-blast arrival time at each

Figure 3.1.Surface overpressure versus time, Stations 1 to 7, Shot Priscilla.

Figure 3.2 Vertical acceleration versus time, Station 1 (GR: 450 feet); Station 2 (GR: 550 feet); Station 3 (GR: 650 feet); Shot Priscilla.

$$
0^{-}
$$

Figure 3.3 Verilcal acceleration versus time, Station 4 (GR: 760 feel), Shot Priscllla.

$=\frac{0}{3}+5$

Figure 3.5 Vertical acceleration versus time, Station 6 (GR: 1,050 feet), Shot Priscilla.
station is designated by the vertical line labelled AB on each plot, and the arrival time, time of peak, and peak acceleration are indicated. In addition, the mappitude of the baseline correction applied to each accelcration-time record is indicated by a dashed linc which designates the baseline before correction.

The vertical acceleration versus time curves are mainly ciaracterized by i single sharp peak of acceleration in the downward direction, often preceded by minor disturbances. it is obvious that the. latter are produced by the precursor and the former by the larger main peak of air blast. The duration of the main sharp peak increased with ground range because of increased rise time

Figure 3.6 Horizontal acceleration versus time, Station 6 (GR: 1,050 feet); vertical acceleration versus time, Station 7 (GR: 1,350 feet); Shot Priscilla.
of the input wave; it increased with depth, because of modification of the wave with travel through the earth. At the deeper gages, particularly at Station 6 , the wave form became more complex, without entirely losing these characteristics. The horizontal accelerations showed somewhat similar wave forms, but with the first and major deflections positive (outward from ground zero). They tended to be slightly more oscillatory in character, with rather pronounced negative peaks following the major positive ones.

Tuble 3.2 presents the corrected acceleration data. In a few cases, the criteria used for making the integration corrections were in some doubt. Therefore, two independent choices were made, and both values are included in the table (see Section 3.3.3 for more details).

TABLE 3.2 bummany of corrected acceleration, velocity and displacement data, ghot priscilla

- Uncorrected values (oable braak at 0.2200 eno).

Where dual channels wore employed on a single gage, the two results are shown in the table; however, only one of the pair ts plotted in the flgures.
3.3.3 Earth Velocity. The corrected earlh velocity versus time plots are presented in Figures 3.7 through 3.13. The magnitude of the baseline change necessary to obtain zero velocity at a specified time is indicated on each curve; the dashed line designates the baseline of the as-

Figure 3.7 Vertical velocity versus tirne, Slation 1 (GR: 450 feet), Shot Priscilla.
read first integration. In general, the wave forms of velocity-time are similar. At the closein stations, where the precursor is just forming, the curves rapidly rise to maximum velocity. However, as the precursor develops, its influence is evident on the velocity response. Also, the velocity peaks tend to become less sharp with increasing depth of measurement.

The criterion for specification of the time that the velocity is zero was difficult to establish. After considerable study, It was decided that, Sor local air-blast induced effects only, the end of the overpressure positive phase would constitute a reasonable criterion for velocity equal to zero. Of course, this criterion nesessarily was only indicative of the corrections to be made; each choice of time of zero velocity tha to be made, taking into account any peculiarities which appeared on individual records.

In a few cases (for example: GV5, Figure 3.12), two different baseline corrections were thought to be equally valid. For these, both values are carried through, and the two displacement values are determined.

The data obtained from the corrected earth velocity plots are tabulated in Table 3.2.

SECRET

Figure 3.8 Verilcal velocily versus IIme, Station 2 (OR: 550 fect), Shot Priscilla,

Figure 3.10 Vertical velocity versus time, Station 4 (GR: 750 feet), Shot Priscilla.

Figure 3.11 Horizontal velocity versus time, Station 4 (GR: 750 feet); vertical velocity versus time, Station 5 (GR: 850 feet); Shot Priscilla.

Figure 3.12 Vertical velocity versus time, Station 6 (GR: 1,050 feet), Shot Priscilla.
3.3.t Eurth Displacement. Figures 3.14 through 3.17 present the corrected earth displacement Fersus time plots, which are obtained from the double integration of the accelerometer records; the pertinent data are tabulated in Table 3.2. Included in Table C. 1 (Appendix C) is the approximate uncorrected peak disphecment; that is, the displacement obtained by double integration of as-read acceleration-time without correction to zero velocity.

In general, the wave forms of the displacement plots are similar, exhibiting, like the veloc-

Figure 3.13 Horizontal velocity versus time, Station 6 (GR: 1,050 fect); vertical velocity versus time, Station 7 (GR: 1,350 feet); Shot Prisellia.
ity rasults, increasing time of rise to peak amplitude for inereasing ground range. The effect of the precursor upon displacement is obvious at Station 6 but to a much lesser degree at the closer gage stations.

Figure 3.14 Vertical displacement versus time, Station 1 (GR: 450 feet); Station 2 (GR: 550 feet); Station 3 (GR: 650 feet); Shot Priscilla.

Figure 3.15 Vertical and horizontal displacement versus time, Station 4 (GR: 750 feet); Station 5 (GR: 850 feet); Shot Priscilla.

SECRET

Figure 3.16 Vertical displacement versus time, Station 6 (GR: 1,050 feet), Shot Priscilla.

Figure 3.17 Horizontal displacement versus time, station 6 (GR: 1,050 feet); vertical displacement versus time, Station 7 (GR: 1,350 feet); Shot Priscilla.
3.3.5 Earth Stress. The earth stress-Hme plats from Project 1.4 are shown in Figures 3.19 through 3.23. Included in each figure, for comparison, is a plot of the overpressure-time record obtalned at each station.

It is seen that, with few exceptions, the wave forms of these plots, particularly those from smallow gages, are similar to those of applied air-pressure. At the greater depths, the time of

Figure 3.18 Vertical stress versus time, Station 1 (GR: 450 feet); Station 2 (GR: 550 feet); Shot Priscilla.
rise to peaic stress is increased, and at Station 6 the effect of the precursor wave is evideln. Three records, 6CV5B, 6CV:0B, and 6CV20B, obtained from Project 1.7 and buried near Project 1.4, Station 6, (Figare 2.5), are included in Figure 3.22. These records will be considered auxiliary data and will be included in the analysis of results. It is apparent that, whereas at the 5-foot depth the primary and auxiliary stress records are comparable in wave form, the records at 10- and 20 -foot iepths are not similar in form. Actually, the auxiliary records seem more reasonable; this will be discussed more fully in Chapter 4 .

The horizontal stress-time plots appear to exhibit the same general wave form as the vertical component

Stress data are given in Table 3.3.
3.3.6 Earth Strain. Figure 3.24 presents the plots of the reduced earth strain records obtained, with peak values marked similarly to those of acceleration. If is seen that, while only two of these records are complete, three others give fragmentary informntion. The intermittent nature of thesc records is apparently caused by momentary contact of broken cables or connectors caused by earth motions.

The two complete strain records show wave forms which rise to a peak avout the time of the peak stress, but decay less rapidly and to a constant value which represents the permanent (residual) strain. This wave form is apparently followed by the fragmentary record of 6SV30, but that of $4 S V 30$ implies a final value of strain which is negative, unless that portion of the record is displaced. The abrupt changes in strain observed on the $4 S V 10$ plot (near 0.180 second) and GSV30A (near 0.280 second) make these results somewtat suspect. One would not expeet tive strain in soil to trary in that manner.

TABLE $2=3$ SUMMARY OF STRESS DATA, SIIOT PRISCILLA
NH, no record; DI, duta indeterminate: and CB, c;jble break.

Gage	Ground Range	Gage Depth	Arrival TIme	Flisst Positive Peak	Time of First Posltive Peak	Maximum Positive	Time of Maximuzn Positive	Maximum Negative	Time of maximum Negative
	f	ft	sec	psi	sec	psi	sac	psi	sec
1cvs	450	5	0.114	104.1	0.129	213.7	0.147	-	-
$1 \mathrm{CV10}$	450	10	NR	NR	NR	NR	NR	NR	NiR
zev5	550	5	NR						
2CV10	550	10	0.130	203.5	0.136	203.5	0.136	208.2	0.143
$3 \mathrm{Cr5}$	650	5	0.133	24.2	0.141	220.5	0.158	-	-
3 CVIO	650	10	0.149	205.8	0.168	211.8	0.174	7.79	0.285
4CV1	750	1	0.146	18.9	0.150	214.9	0.175	1933	0.415
4CV5	750	5	0.151	42.3	0.159	181.5	0.183	34.1	0.300
4CV10	750	10	0.164	11.8	0.172	46.6	0.197	-	-
4CVIOA	750	10	0.164	7.11	0.167	42.2	0.190	-	-
4CV20	750	20	NR						
4CV20A	750	20	0.168	28.4	0.180	28.4	0.180	-	-
4CV30	750	30	NR						
4CV30A	750	30	NR						
4CV50	750	50	0.197	114.4	0.211	132.2	0.250	-	-
4CV50A	750	50	NR						
4 CHIO	750	10	0.157	20.5	0.165	94.2	0.192	13.0	0.375
4CR50	750	50	0.199	10.0	0.212	14.9	0.247	3.98	0.207
4CH50A	750	50	0.199	10.4	0.220	14.7	0.248	4.36	0.207
SCV5	850	5	NR						
SCV10	850	10	0.181	48.6 CB	0.219 CB	48.6 CB	0.219 CB	CB	CB
6CV1	1,050	1	0.204	27.6	0.227	74.5	0.273	8.97	0.515
6CV5	1,050	5	0.207	14.8	0.228	94.4	0.281	8.58	0.530
6CV5B	1,050	5	0.205	13.3	6. 221	56.5	0.279	12.2	0.445
6CV10	1.050	10	0.213	DI	DI	54.5	0.283	33.8	0.220
6CV10A	1,050	10	NR						
6CV10B	1,050	10	0.208	30.1	0.238	160.1	0.288	-	-
6CV20	1,059	20	NR						
6CV20A	1,050	20	0.219	DI	DI	DI	DI	91.9	0.260
6CV20B	1,050	20	0.216	5.38	0.254	19.4	0.323	1.24	0.525
6CV30	1,050	30	0.230	3.48	0.271	7.47	0.303	4.79	0.256
GCV30A	1,050	30	0.230	2.64	0.272	5.93	0.303	5.99	0.255
GCV50	1,050	so	0.256	299	0.270	21.7	0.314	2.25	0.500
6CV50A	1,050	50	0.256	DJ	D:	23.6	0.316	272	0.525
6CH10	1,050	10	0.216	6.44 CB	0.286 CB	6.44 CB	0.286 CB	CB	CB
6CH50	1,050	50	0.281	9.640	0.298	9.64	0.298	0.438	0.485
6CH50A	1.050	50	0.281	8.68	0.297	8.68	0.297	-	\cdots
7CVs	1,350	5	0.270	3.51	0.334	28.3	0.406	0.501	0.362
7CV10	1,350	10	NR						

Table 3.4 presents the basic strain data obtained. For convenience, peak alr pressure and peak measured stress are included.

3.4 SEISMIC MEASUREMENTS

The selsmic measurements were made to obtain dath to aid in the interpretation of the belowground effects on this project. The first phase of the program was the determination of the

Figure 3.21 Horizontal stress versus time, Station 4 (GR: 750 feet); vertical stress versus time, Station 5 (GR: 850 feet); Shot Priscilla.
variation of velocity (C_{L}) with depth, particularly in the first 100 feet. Vertically drilled holes were used for this purpose. Small dymamite charges were fired at various depths in these holes, and geophones were pliced near the top of the hole and at distances of 50 and 100 feet from the hole. The arrival times were measured and plotted against depth to determine the compressional wave velocities (C_{L}) in a vertical direction.

The second phase of the seismic program consisted of miking a seismic refraction profile to determine the seismic horizontal velocities and their variation with depth. Figure 2.6 shows the location of shot holes and refraction spread used in the seismic program and their relation to the blast line. During this part of the program an cifort was also made to generate shear waves and

Figure 3.22 Vertical stress versus time, Station 6 (GR: 1,050 feet), Shot Priscilla.

Figure 3.22 Continued.

Figure 3.23 Vertical and horizontal stress versus time, Station 6 (GR: 1,050 feet), Shot Priscilla.

Figure 3.24 Vertical strain versus time, Station 4 (GR: 750 feet); Station 6 (GR: 1,050 (eet); Shot Priscilla.

Figure 3.25 Travel-time data, Shot Point 1, Frenchman Flat,

Figure 3.26 Travel-time data, Shot Point 2, Frenchman Flat.
measure shoar-wave velocities; however, no success was met in the attempt to mensure shearwave velocity directly. However, some short spreads, using only a blanting cap and hammer blows for energy, werc set out and Faylelgh waves were recorded. From these Fayleigh veloctHes an approximation of the surface shear-wave velncity was made.
3.4.1 In Situ Seismic Velocitics. The seismic velocities in a vertical direction were measured by detonating small dymanite charges ($1 / 4$ to $1 \frac{1}{2}$ pounds) at a number of depths in three shot boles (see Section 2.3.4) with detectors placed at the surface. The horizontal velocities were

TABLE 3.4 SUMMARY OF STRAIN DATA, SUOT PRISCILLA
NR, no record and CB, cable break.

Gage	Ground Range	Gasc Depth	Arrival Time	Madmum Pasitive	Time of Maximum Postive	Maxdmum Negative	Time of Maximum Negative	Residual Strain	Time of Resticual Strain
	f	12	sec	ppo ${ }^{\text {- }}$	sec	pupk	sec	spp ${ }^{\circ}$	806
4575	750	5	0.150	8.81	0.194	-	-	6.60	0.309 CB
4SV5A	750	5	0.150	8.78	0.195		-	7.54	0.309 CB
$45 V 10$	750	10	0.172	15.1	0.187	0.233	0.176	15.1	0.287 CB
45V20	750	20	NR						
sSV20A	750	20	NR	MR	NR	NR	NR	NR	NR
45V30	750	30	NR						
45V50	750	50	0.185	7.58	0.248	-	-	3.65	7.50
ESY50A	750	50	0.185	7.86	0.249			3.70	4.80
esv5	1.050	5	NR						
ESV10	1.050	10	NR						
6sv20	1,050	20	NR						
Esv20A	1,050	20	NR						
6sy30	1,050	30	0.220	5.79	0.304	-	-	0.758	7.50
6sviod	1.050	30	0.220	5.99	0.304	-	-	0.730	4.80
6 Sv50	1,050	50	0.209	2.99	0.330	0.034	0.213	0.457	5.70
ESv50A	1.050	50	NR						

- Parts per thousund.
determined from the refraction profile by setting out a line of geophones and shooting small charges in shallow holes at various distances in line with the geophone spread.

The results of the vertical seismic profiles shot at the three different positions show the variations of the velocities with depth. Figures 3.25 through 3.27 are plots of the time-depth carves at the three hole positions. While there is some 20 percent lateral variation, all the time-depth curves are similar. (No effects of water intrusion on the vertical velocities was apparent in the third hole.) The average-velocity depth and the interval velocities, determined by the increments of the time-depth curves, are also shown in these figures. It is not implied that the interval velocities are as abrupt as shown, bat this presentation is conventional, and attempts to smooth the curve are not justified by data of this type.

The results of the seismic survey do not show the gradual increase of velocity with depth that was expected. The low-velocity lager in the vicinity of 40-to 50-foot depth was not indicated from previous data taken by earlier refraction surveys (Reference 10). The refractionsurvey method has the inherent limitation that it cannot detect a low-velocity layer which underlies 2 high-velocity layer. When the 50 -foot instrument hole was examined, there was no visual indication that the playa in the 40- to 50 -foot low-velocity region was any different than the upper high-velocity materinl. One explanation for this low-velocity material would be that rate of deposition for this region was faster than for the rest of the overlaying material. This higher rate would produce material that was not as compact and of a lower modulus and would thus have a lower velocity.

The unexpected results of the vertical seismic-velocity surveys were sufficiently different from those assumed in the original predictions to cause some concern as to the validity of the
predictions. There was insufficient background as to the effects that the velocity inversion would have on the stress and acceleration to justify thelr modification. The strain, however, was considered to be more directly affected by the local modulus, and these predictions were modified to take the selsmie results into account. The revised values are shown in Table 2.1.

The results of the refraction protile show tour layers taving different horizontal velocities to a depth of 200 fect. The surface layer to a depth of 20 feet showed an average velocity of $1,050 \pm 100 \mathrm{ft} / \mathrm{sec}$, the second layer, which was 42 feet thick, had an average velocity of 2,260 $\mathrm{ft} / \mathrm{sec}$ and the third Layer, 106 feet thick, had an average velocity of $2,665 \mathrm{ft} / \mathrm{sec}$. The fourth layer was penetrated onis a few feet and showed a velocity of $3,340 \mathrm{ft} / \mathrm{sec}$. If the seismic profile had been extended beyond 900 feet along the surface, the depth and velocity of deeper layers could have been determined.

Figure 3.28 shows the travel curve of the refraction proille and a wave-front diagram indicating the depths and velocities of the various refraction horizons. The iorizontal velocities sbown by the scismic-rcfraction work : re somewhat greater than the vertical velocitics. This

Figure 3.2T Travel-time data; Shot Point 3, Frenchman Flat.
is normal and to be expected in multilayered formations. As stated before, a break in the timetravel curve occurs only when a higher velocity layer is below a layer of low velocity. The vertical velocities probably give better overall velocity data than the refraction velocities which only indicate velocities in specific layers.

A close examination was made of the refraction records to see if any shear waves were recorded. No definite arrivals were observed that could be identified as shear waves. However, two short spreads were recorded using geophone intervals of only 20 feet and hammer blows and a blasting cap as a source of energy, and Rayleigh waves were observed on these short re[raction profiles. The results of this survey are shown in Figure 3.29, which shows al Faylcigh wave velocity of $575 \mathrm{ft} / \mathrm{sec}_{ \pm} \mathbf{1 5}$ percent and a C_{L} of $1,520 \mathrm{ft} / \mathrm{sec} \pm 15$ percent. This gave a ratio of $C_{R} / C_{L}=0.378$ (Figure 3.29) which gives a Poisson's ratio (σ) of 0.40 for the surface material to a depth of approximately 15 fect; asing the extreme values of velocity, one obtains $0.22 \leq \sigma \leq 0.44$.
3.4.2 Velocities in Backfill. During the b.vekfilling of the deep gage koles at Stations 4 and 6, a geophone was planted in each hole near the wall at a depth of 50 fect. Late in the preshot

63
SECRET
operation after backflling was completed, measurements were made of the travel time of the selsmle impulse from the geophonc to the surface.

Small charges consisting of only a blasting cap were fired on the suriace. One ctarge was shot on the opposite side of the hole from that where the geophone was planted and the ather charge 5 feet away from the edge of the hole above the geophone (also 5 feet off vertical). The

Figure 3.29 Refraction survey, short-span instrument array, Frenchman Flat.
travel times through the undisturbed material were 33 and 36 msec and through the backfilled material they were 36 and 37 msec . These travel times correspond to average velocities of $1,390 \pm 40 \mathrm{ft} / \mathrm{sec}$ and $1,450 \pm 60 \mathrm{ft} / \mathrm{sec}$. The average travel time for the firsic 50 feet from Shot Points 1, 2, and 3 showed a time of 24.2 msec which corresponded to an average velocity of $2,060 \mathrm{ft} / \mathrm{sec}$. These data imply that the backfill failed to reach the original modulus and that the effect of backfilling and moisture content also reached somewhat beyond the edge of the hole.

Chopter 4 DISCUSSION

After a brief description of acceleration and velocity wave form types, the Shot Prisclla ground shock data will be discussed. Where applicable, the results of the Tumbler, Opshot-Knothole, and Jangle shots (Appendix B) will be compared with those from Shot Priscilla. The main topics to be discussed are attenuation of ground shock with depth, carth response as affected by the character of air-blast pressure input, local effects versus effects from remote sources, and response spectra. Also included will be a brief analysis of deduced stress-strain relations for soll.

4.1 ACCELERATION AND VELOCITY WAVE FORMS

The most typical characteristic of ground accelerations induced by the air blast is that there is no single ideal wave form. In the elastic model, the accelerations caused by the direct wave appear proportional to the time rate of change of overpressure; hence, one would expect the character of the accelerations to change with overpressure wave form. The integral of vertical acceleration, vertical particle velocity, is perhops the most familiar of all ground-motion parameters since it bears a direct relationship to the overpressure. Six of the more predominant acceleration and velocity wave form types characteristic of the NTS are shown schematically in Figure 4.1. Eramples of these wave form types taken from various tests are listed in Table 4.1. When the wave.form is ideal and traveling superseismically, the downward acceleration is large compared with the following upward accelerations (Figure 4.1a), examples: Records $1 \mathrm{V5}, 1 \mathrm{V10}$, and 2V5 (Figure 3.2). The resulting velocity is similar to the air pressure, falling off somewhat more rapidly than the pressure and becoming zero before the end of the positive phase of the air pressure. At lower peak overpressures, the first downward acceleration is followed by an upward peak acceleration of neariy equal or sometimes greater magnitude (Figure 4.1b). This type of wave form is common in small high-explosives charge work even at high overpressures.

The resulting velocity decreases more rapidily than in Type a and becomes positive prior to the end of the positive phase. The peak upward velocity is always much smaller than the peak downward velocity, however. The first indication that the air blast is traveling transseismically is an outruning of the downward acceleration (Figure 4.1c) compared with the sharp onset of acceleration illustrated previously, example: Record 4V20A (Figure 3.3). This type of outrunning, although infrequently observed during muclear tests, is common on small high-explosives shots.

The character of the greund acceleration in the precursor region changes markedly as the precursor develops and decays. Figure 4.1d illustrates a wave form typical of the early stages of precursor development, examples: 4V1, 4V5, and 5V5 (Figures 3.3 and 3.4). The precursor induces accelerations similar to those of Figure 4.1b. The main pressure wave induces larger (since the pressure is much greater) downward accelerations. The peak upward accelerations are low since the pressures are large in this region. As the precursor transgresses its various sthges of development, the air pressure wave form becomes violent, producing the high frequency acceleration record of Figure 4.1e, examples: 6V1, 6 V 5 (Figure 3.5). As the blast wave cleans up, these accelerations may become small in magnitude.

When the refracted ground wave outruns the local ware, the first peak vertical acceleration is positive or upward as in Figure 4.1f. The frequencies associnted with the remote source accelerations are much lower than those of the local effect; onset of acceleration is gradual and in many cases hardly perceptible; and successive peaks grow in magnitude and then decay. The
signals often last for two or three times the positive phase duration of the air blast wive. Although the accelcrations from remote sources are generally small compared with those of the local wave, their low irequency results in velocities and displacements which are comparable with those of the local wave.

The arrival of the local effect is identified by a sudden increase in velocity (Figure 4.2), the velocity jump, as it is called in British weapons effects reports. Since the velocity jump may

Figure 4.1 Schematic diagrams of vertical acceleration and velocity wave forms.
be superimposed on ascending or descending portions of the remote effect, it represents the most frobable peak downward value of the velocity. Furthermore, it bears a direct relationship to the overpressure in the same manner as the peak dowmard velocity in the superseismic caseThe influence of the refracted wave not only appears abead of but also behind the arrival of the local wave. Because of this, the peak upward velocities become comparable with the velocity jump, Figure 4.3.

Even though the blast wave may be superseismic, i.e., outruming is not observed, the signal produced ioy the refracted wave may be sufficient to modify the velocities in the later portions of the acceleration puise. Thus, the remote source wave can have marked effects on the peak displacements, effects which are not observed in the peak velocity.

At depth, outrunning occurs carlier than at the surface, and the accelerations of the direct wave are attenuated. In such cases, the acceleration wave type becomes extremely confused, particularly in the precursor region where types d, f, and possibly cemerge. This combination may occur at depths as small as 20 feet, cf., Shot Priscilla gages 4V20A and 6V30A (Figures 3.3 and 3.5).

4.2 SIGNALS FROM REMOTE SOURCES

The origin of sigrals from sources other than the local air-blast shap has been discusised
for the general case in Section 1.3. Flgure 4.1 shows the air pressure time of arrival plot for the Priscilla event; also plutted on the fizure are the data from the refraction survey taken at Frenchman Flat as a mart of Project 1.4. Siding the seismic curve up the air-blast curve, one finds that the surface level outrunning ground range for Prisella was about 2,500 feet, due to a signal originating approximutely 600 feet closer to ground zero. However, the plot of Figure 4.4 does not tell the whole story; It is possible for: (1) outrunning to occur at closer ranges for measurements taken underground; and (2) refracted signals to be manfest on records after the arrival of the flrst signal.

Therefore, although the Priscilla acceleration results (measurements out to $\mathbf{1 , 3 5 0}$-foot ground range) show no outrunning in the strict sense of the term, they show that refracted signals from remote sources were present, particularly from the deeper gages. Notable emamples are found

TABLE 4.1 EXAMPLES OF VERTICAL ACCELERATION WAVE FORM TYPES SHOWN IN FIGCURE 4.1

Wave Form	Example *	Shot	Overpressure
a			psi
	IV5	Plumbbob, Priscilla	554
	14V1	Upshot-Kinothole 9	21.5
b	17V1	Upshot-Knotbole 9	11.5
	$5 \mathbf{}$	Mole Round 104	78
c	4V	Mole Round 208	>160
d	4V1	Plumbbob, Priscilla	104
	TV5	Plumbbob. Priscilla	59
	15V1	Upshot-Knothole 10	300
	1V	Tumbler 4	45
e	17V1	Upshot-Knothole 10	14.5
	0V1	Upshot-Knathole 10	8.1
f	$8 \mathbf{V}$	Tumbler 1	5.2
	5 V	Tumbler 2	3.4
	9V2	Mole Round 308	13.8

- Cage designation corresponds to that given in reports of these shots.
at Stations 6 and 7 (Figares 3.5 and 3.6). Record 6V30A exhibits the type of behavior expected when the signals from remote sources arrive after the local precursor slap and the main wave slap; however, when this occurs, it is almost impossible to identify the effect of the refracted wave. Similar behavior is evident on the $7 V 5$ and $2 Y 10$ records (Figure 3.6); it is likely that the low frequency, small amplitude acceleration ascillations beyond about 0.5 second on these records are due to remote source signals.

It is readily apparent that the remote source disturbances are extremely bothersome when one is integrating acceleration-time records to obtain velocity and displacement versus time. Any criteria which are ordinarily useful for determining the time of zero velocity (Appendix C), may be rendered void by the presence of sigmals from a remote source.

4.3 ATTENUATION OF GROUND SHOCK WITH DEPTH

By far the major portion of data which may be used to determine the attenuation of ground motion with depth are the measurements on Shot Priscilla. For this reason, observations made on other shots are discussed concurrently with the Shot Priscila dat2
4.3.1 Acceleration (Attenuation wirh Depth). The attenuation with depth of maximum downward acceleriation measured on Priscilla is summarized in Figure 4.5. Both the Stanforl Re-

Figure 4.2 Uncorrected and corrected vertical velocities, 5-psi overpressure, Tumbler Shot 1 (arrow shows air-blast arrival).

Figure 4.3 Vertical velocity versus ground range, Tumbler Shot 1, 5-foot depth (numbers adjacent to data are overpressures in psi).
search Institute (Project 1.4) and the Sandia (Project 1.5: Reference 15) data are plotted on the ifgure. Relerence to Figure 4.5 shows that between 5 - and 10 -foot depths the attenuation varies between about 30 to 45 percent, except at the 550 - and 650 -foot ground ranges where the change in peak acceleration with depth is negligible. There is no apparent explanation lor this behavior; it is significant that the Sandia data Indicated rather sharp attenuatien at greater depths at a range of 650 feet

Taking the Stanford Research Institute (SRD and Sandia data together at 750- and 850-fnot

Figure 4.4 Air-blast time of arrival, Shot Priscilla, and seismic soil survey, Frenchman Flat.
ranges, it is evident that the tendency is toward a decided decrease in acceleration attenuation betwcen 10- and 30 -foot depths. Wave theory gives the following formula for the particle velocity at ine interface between two materials after passage of a step pulse:

$$
v=\frac{\sigma}{\rho_{1} C_{1}} \frac{2}{1+\frac{\rho_{2} C_{2}}{\rho_{2} C_{1}}}
$$

Where σ is the stress change across the approaching wave front; $\rho_{1} C_{1}$ is the impedance of the material in front of the interface; and $\rho_{2} C_{2}$ is the impedance beyond the interiace. The step velocity across the approaching front is $V=\sigma ; \rho_{1} C_{1}$. Therefore, the theory sugigests the fol lowing: (1) If an accelerometer is locatted at or near the transition from a hard to a soft mate-

SECRET

rinl, the peak acceleration is increased. (2) If an accelerometer is located at or near the transition from a soit to a hard material, the peak aceeleration is decreased.

Reference to the selsmic prolile measured at Frenchman Flat prior to Priscilla (Section 3.4) Indicales that the presence of an underlying soft (lower seismic velocity) layer may explain the behavior at the 750- and 850-foot ranges on Priscilla.

Because the 10 -foot deep gage at 1,050-foot ground rauge was lost, there are no data between 5 and 20 feet at this station. At 1,350-foot range, the SRI and Sandia datn agree well and Indi-

Figure 4.5 Earth acceleration versus depth, Shot Priscilla.
cate no pronounced change in logarithmic attenuation with depli for peak downward acceleration.
To summarize the attenuation of pcak outward horizontal acceleration between 10- and 50foot depths, it is apparent that at the two stations instrumented (750 and 1,050 feet) the attenuation is less than for the corresponding peak downward component; numerically, it is about 40 percent for the outward acecteration and about 80 percent for the downward.

Peak negative accelerations on Priscilla and Jangle S, normalized against the peak acceleration at 10 -foot depth, are shown in Si-gure 4.6. The 10 -foot depth was chosen as a basis of coraparison since the 5 -foot depth was not common to these observations. The dashed lines shown
are gure are estimates of the confidence limits of the correlation. The identical dath are also shown ha Flgure 4.7 on an exponential plot. The power taw plot of Figure 4.6 appears most satisfactory.

The aceclerations at 5 -foot depth are $1.3 \neq 0.2$ times those at $10-$ foot depth. Using this figure, the Jangle S and Sandia Priscillan measurements were adjusted to conform to a normalization against the acceleration at 5 -foot depth, Figure 4.8. To complete the acceleration dath summary, the Tumbler observations have also been plotted. The same confidence limits are shown as in

Figure 4.6 Attenuation of vertical acceleration with depth, Nevada Test Site (power law attenuation).
Figure 4.6 and are seen to include 93 percent of all acceleration measurements at the NTS.
Because of the wide variation in acceleration-time wave forms, it is well known that analysis of peak accelerations alone has only limited value. Changes of response with depth will now be discussed using the velocity and displacement data.
4.3.2 Velocity (Attenuntion with Depth). In Figure 4.9 are shown the vertical velscity jump at depth :eferred to the velocity jump at 5 -foot depth. This manner of presentation has been chosen to tie into the correlation of Figurc 4.27. An exponential decay haw appears to represent the data better than a power law dceay. There is nothing fundamental alout this choice of coor-
dirates; the cholec was simply a matter of convenience in providing a straight line extrapolation to greater depths.

Also shown in Fliture 4.9 are five datum points from Tumbler. Threc of these observations are in excellent agreement with Priscilla duth; two are 50 percent harger.

On Priscilln, at the two stations (palk overpressures of 275 and 100 psi) where measurements were obtalned down to 50 -foot depth, attenuation of perk downward velocity is simitar for these overpressure inputs. There is some indication on the figure that the underiying soft tayer affected the peak downward velocity at the 100 -psi station; however, at 275 psi, the effect observed on the peak acceleration (Figure 4.5) is almost completely eliminated.

The peak outward velocity data from Priscilla shows somewhat less attenuation with depth

Figure 4.7 Attenuation of vertical acceleration with depth, Nevada Test Site (exponential law attenuation).
than the downward component at 275-psi overpressure; at the larger ground range (100-psi overpressure), the outward velocity at 50 -foot depth is actually more than double that measured at 10 feet. This Latter effect can be explained on the basis of the iniluence of ground motion signals from remote sources closer to ground zero.

The vertical velocity-time curve is similar to the overpressure-time curve when the air blast wave is superscismic. The velocity peak is, hovever, more rounded and progressively

Figure 4.0 Attenuation of downward velocily with depth, Nevada Test Site.

Figure 4.8 Altenuation of vertical acceleration with depth, data normalized against acceleration at 5 -loot deplh, Nevada Test Site.
lags tie wave front by an increasing amount as the depth increases. This lag is the sum of the overpressure rise time plus a time lang due to spreading of the acceleration pulse with depth. For an Ideal overpressure wave form (no precursor), the latter time difference would correspond to the rise time of the vertic:' velocity pulse. The rise time (corresponding to an ideal overprussure wave form) bas been deduced from the Stanford Research Institute Prisellia acceleration and velocity data (corrected for transmission time) and is shown in Figure 4.10. The single satistactory observation on Tumbler is also shown and compares surprisingly well with the Priscilia data.

Still another method has been employed to show how velocity-time traces change with depth The overpressure-time records and the velocity-time curves wore normalized to their peak values; that is, each parameter magnitude was divided by the peak value and the ratio plotted vergus time. Figures 4.11 through 4.15 present the results of these normalizations. Also in-

Figure 4.10 Increase in vertical velocity rise time with depth, Frenchman Flat
cluded in the figures are the normalized earth stress records, which will be discussed in Section 4.3.4. The records are aligned so that the peaks coincide and velocity curves are inverted; in this way easy visual comparisons can be made of rise times and decay times.

Due to the many overpressure gage cable breaks, Figure 4.11 indicates only limited conclusions. It appears that at Stations 1 and 2 ($550-\mathrm{psi}$ and 365 -psi peak overpressure) the particle velocities at 5 -foot depths attain a peak value in approximately the same time as the surface overpressure; however, at 10 -foot depth the velocity rise time is about 5 msec longer. At Station 3 (Figure 4.12) the increased rise time for velocity is evident at both 5 - and 10 -font depths and the decrease following the peak is close to that displayed by the surface overpressure. Similar behavior is observed at Station 4 (Figures 4.12 and 4.13) down to depths of 10 reet. But below 10 feet the velocity rise time increases significantly. Also the record appears to decay more slowly than does the surface overpressurc. At Station 6 (Figures 4.14 and 4.15), where the precursor is well-developed, the rise to peak velocity follows the surface overpressure down to 30 -foot depth, but deviates markediy at 50 feet. Also, at this station, one observes the first definite tendency for the velocity to decay more rapidly than the surface overpressuretime measurement. At a depth of 50 fect (Figure 4.15), the velocity rise time is about 20 msec longer than for the overpressure, which represents the only significant departure from following the input at Station 6; here again, hoxever, the velocity desay is more severe than the over-

Figure 4.11 Overpressure, particle velocity, earth stress, normalized to maximum value, Stations 1 through 3, Shot Priscilla.

Station 3 an 650 is

Figure 4.12 Overpressure, particle velocity, earth stress, normalized to maximum value, Stations 3 and 4, Shot Priscilla.

SECRET

Figure 4.13 Overpressure, particle velocity, earth stress, normalized to maximum value, Station 4, Shot Priscilla.
pressure decay. Stallon 7 (Flgure 4.15) shows similar behavior to Station 6, there is only a small increase in velocity rise time at 10-foot depth.
4.3.3 Displacement (Attenuation with Depth). The integrations of the Stanford Research Institute acceleration data are at present the only displacement data available for Priscllia. These data are shown in Fipure 4.i6, normaited against the peak displacement at 5-foot depth. Additional data will be avallable for correlation when Sandia Corporation acceleration and longspan displacement gage data buve been reduced (Reference 15).

The attenuation of displacement for all ground ranges except the 100-psi station approximates the attenuation of velocity, Figure 4.9. At the 100 -psi station the displacements below 5-foot depth are larger than would be expected from observations at the other stations. From the character of the acceleration records, it is suspected that a refracted ground wave was superimposed on the direct motion induced by the main air-blast wave. Due to the direct motion induced by the precursor, it is difficult to clarify this point since outrunning cannot be definitely established. Since outrunning occurs at depth prior to outrunning at the surfince, Bround wave interference is not unlikely and would explain the greater displacements, cil., Figure 4.33, Tumbler 1. The Project 1.5 displacement data expected on Priscilla may clarify this point. It should be noted that the displacement-time plots are probably not reliable beyond the time of peak value. The truth or this statement was demonstrated when, for the Project 3.5 data analysis (Reference 16) it was necessary to attempt correlation hetween the integrated displacements and scratch gages attached to a buried structure. Reading the acceleration-time records out to much hater times and using the scratcin gage data as a guide to proper corrections to be applied, it was found that the vertical displacements behaved difrerently from those shown in Figures 3.14 through 3.17. The primary difference was that, after reaching about the same peak value, the Project 3.5 integrations decreased steadily to almost zero displacement beyond 1.0 second. The procedure used for Project 3.5 ilustrates the distinct advantage of having an independent measurement with which to guide the corrections.
4.3.4 Stress (Attemation with Depth). The maximum rertical earth stress is plotted versus gage depth in Figure 4.17. For each gage station the curve tas been joined to the maximum surface overpressure datum point (plotted on the figure at 1-foot depth). Marimum stress, as determined by Carlson-type gages on Project 1.7, is also plotted for the 1,050-foot ground range. There is some doubt about the validity of comparing Project 1.4 stress measurements with those from Project 1.7. The latter gages were immersed in a large back-filled hole and the 20-foot deep gage was positioned on the bottom of the excavation.

The attenuation of maximum vertical stress between the surface and 5 feet is not severe and is greatest at the first and last station instrumented; the attenuation at these shallow depths is probably strongly a function of the duration of the overpressure input pulse.

The marked increase in stress at 50 feet for both the 750- and 1,050-foot stations is unexpected; however, there is little reason to expect these larger values of stress to be caused by over-registration of the gage. On the contrary there are many more situations which could cause under-registration of the Carison stress gage than could cause serious over-registration.

The pattern of attenuation of vertical stress with depth between 0 and 30 feet is in general agreement with the attenuation equation proposed on the basis of Upshot-Knothole data (Reference 1), which predicts a halving of stress for each 10 -foot increase in deplh. Point by point, the data of Figure 4.17 depart severely from this attenuation equation. However, the fit of dita is only slightly poorer than the original data on which the equation is based. The 50 -foot stresses, however, tend to deny the validity of this attenuation equation.

Referring to Project 1.4 and Project 1.7 results plotted on Figure 4.17, the large discrepancy between the maximum stress at 5 and 10 fcet, measured at the two adjacent locations, is readily apparent. Since no systomatic behavior is observed at the two locations, it is difficult to reason that the differences are due only to the different planting procedures used by tine two projects (also see wave forms of Figure 3.23). Since these deviatinns represent wide variations in stress

Figure 4.14 Overpressure, particle velocity, earth stress, normalized to maximum value, Stations 5 and 6 , Shot Priscilla.

Figure 4.15 Overpressure, particle velocity, earth stress, normalized to maximum value, Siations G and 7, Shot Priscilla.

Figuro 4.17 Maximum earth stress versus gage depth, Shot Priscilla.

Figure 4,16 Altonuation of vertical displacement, Frenchman Flat.
response, one is not very encouraged ahout the uiefulncss of a limited number of Carison gage results in predicting ground motion and/or structure response.

One cause of decay of peak stress with depth ls the finite duration of the blast wrave on shot Priscilin. An inspection of the air-blast wave forms shows that the duration of the main peak of the blast wave was relatively short. Measuring betwoen points or arrival and ane belf the peak pressure, this wras about 28 msec at 750 feet and 55 msec at 1,050 fcet By rough calculations of trace velocity, these sorresipond to a wave length of balf-peak presisure of only about 100 to 125 feet. This is certainly not long enough to be considered infinite compared with gage depths of 50 or even of 20 feet. There is reason to believe that, had the duration been much lunger, the stresses measured at 20 and 30 [cet would bave more noarly approzehed the pcak alr-blust pressure.

There are several ways of looking at the effect of changing soil characteristics upon the attemation with depth of maxdmum vertical earth stress.

One is to assume initially that the gages record true free-field phenomena and then look at the effect of the hard and soft layers upon wave reflection palterns. By so doing, one can give a passible explamation for an increase (i.e., pegrive attemation) in response with depth. However, this argument applies only if the charation of the peak orerpressure is short compared with the time required for the wave to be reflected oace again at the earth's surface. Moreover, it is improbable that the high measured stresses recorded at 50 feet could be explained on this basis; the stress-time curres are relatively Dat in the region of maximum stress and give no indication of rellections. Furthermore, the Profect 1.7 20-foot gage was at the bottom of the backill ard did not exinibit an increase in stress.

Another way to approach the problem is to consider it statically and to surmise hor the load at the suriace was carcied down through the soll. Daring the baciriling of the deep boles at Sintions 4 and 6, a geophone was planted in each hole near the rall at a depth of 50 feet, and mensurements were made of the travel time from the surface to ench geophone. These travel times correspond to average velocities from 0 to 50 fect of $1,390 \pm 40 \mathrm{ft} / \mathrm{sec}$ and $1,450 \pm 60$ fifisec, compared with 2,060 it'see Irom Shot Points 1, 2, and 3, (Figure 2.6). These data tmply that the baciofill failed to reach the orlgimal motulus and that the effect of this cordition reached somewhat begond the edge of the hole.

On the assurapion that the stress gages were placed in a medioun of uniformily low elastic mockulus, one would expect the measured stresses to be lower than those of the free firid, with the stress differences largest where differences in elastic modulus (or selsmic velocity) are largest. This conclustion is based an the premise that the bountary between lower and higher elastic modulus media ean earry vertical shear. This assomption is good for the undiaturbed mediam and probably setisfactory even at the backrill-bole vall boundary. Under loading, the two media will undergo much the same stratn; hence, the stress will be lower in the media of lesser modtulus.

Note, towever, that the local selsmic velocity at 40 - to 50 -foot depths in the free field (Figures $\mathbf{3 . 2 5}$ and 3.27) is only slightly higher than that which appears characteristic of the average at the 750-and 1,050-foot stations. This hat may offer a possible explanation, in the light of the above discussion, of the lideber measured stresses at both 50 -foot depths. II can be conchuded that the 50 -foot stresses are more indicative of the free-field stresses and that those measured at intermedtate dopths were depressed due to the lowered modulus.

Sill a third way to view the problem of explaining the streas results is to take a momewhat cyaical approach. One can say that the backfill in the niche around the stress gages at 20 - and so-foot deplhs was not well compressed, and hence these gages saw only a minute strest.

To sumumarize, it is probable that all these effects are present in varying degrees of severity. Sulfice to to say chat it is diflicult to determine the validity of the free-field carth stresss results obtained by Project 1.4 om Priscilla. The control of backdill operations daring Priscilla was considered optimum and extraordinary care was Laken in placement of Crison grges; still the stress measurements appear inconsistent interaally and hence leave much to be desired. It is believid at this time that the present concept and method of earth stress measurement may be ircidequite and misteading- Alternative methots cannot as yet be offerid, exeept emat probably
stress must be derived from other primary measurements such as stratn and aceeleration, which are more independent of hole sizec and the character of the backfill.

Reference to the normalized records of Figures 4.11 through 4.15, reveals some interesting facts about the stress-time wave form changes with depth. At Station 3 (Figure 4.12), the rise time to peak stress increases notiecably from 5 - to 10 -foot depths; mowever, the decay of stress at both depths, ts comparable with the decay of the overpressure input. Flyures 4.12 and 4.13 include the results at Station 4; here no slgnilicant increase in stress rise time is noted at 1-, 5-, and 10 -foot depths. The stress records at 20- and 50-fool depths deviate markedly from the tuput overpressurc-time wave form; also, they do not resemble cach oher.

At Sation 6 (Figures 4.14 and 4.15), the stress rise the and decay follows the overpressure input quite closely to depths of 10 feet. At 20 feet, the rise time is moticeably longer for the stress, whereas at 30 fect the stress recorc is strange, and at 50 fect the stress response to the precursor portion of the lnput wave is depressed retative ta the peak. The one comparison possible at Station 7 reveals that at 5 -font drepth the stress record followed the overpressure Impat quite Iaththally.
4.3.5 Strain (Attemation with Depth). Due to the full or partial fallure of eight of the ten short-span strain eages, the strain-time data of Project 1.4 were rather merger. On some of the partal records it was possible to Identify the maximum vertical strain recorded at the gage station; thas, the measurements yielded a total of five peak strain values, three at 750-foot eround range and two at 1,050 feet.

In addition to the atrain gege measurements, it was possible to compute the average vertical atrain from the integrated accelerations (i. e., displacement-time plots). Using the strain-time results 282 gaide to give the time of maximam strain; these computations were carried out and are listed in Table 4.2. The results are plocted in Figure 4.14 and show that the calculated maxmoum average stralns are not inconsistent with the few strain-time measurements obtained This takes the form of an independent check and leads to more confidence in the manner in which the acceleration-time records were fintegrated.

The detz of Figure 4.18 indicate that at the $\mathbf{7 5 0}$-foot station (275 psi maximum overpressure) the peak earth strain had a decided attemontion with depth, with a prosounced deerease between 1 and 30 feet below the ground surface; at larger depths (to 50 feet), the maximum vertical strain appeared ω level off at about 5 parts per thoymand On the ocher band, the data obtained at 1,050 feet (100 -psi overpressure level) showed practically no change in maximum vertical strain with mereasing depth; In fact, there was even a sultght indication of harger (negative attenuation) strain near the $30-f 00 t$ depti. The reaswn for this difference in behavior was probably traceable to the chracter of the inpat overpressure-time at the two stations; this is discussed in mare detail in Section 4.4.4.

It is noted that the Station 4 strain measurement at 5 -foot depth (4SV5A) had a much smaller peak magnitude than indicated by the computations using triegrated accelerations. Also, the 5foot measurement vas even smaller at maximm than was the $\mathbf{1 0}$-foot strain at the same station (4SV10). Another pertinent point can be made upon inspection of the $4 S V 5$ eage record (Figure 3.24). The record indicates that aldhough the overpressure inpat incrensed from a precursor pressure of about 25 pai to 2 peat presmure emeeding 225 pssi, 2 nine-fold fincrease, the strain merely dowbled. The 4SV50A and 6SV50 strain records are examples of eharacteristic behavior in this regard

II must be coneluded, therefore, that the 4SV5 atrain measurement was, for some reason, erroinous; the true peak strain at this position was significantly larger than was recorded.

4.4 GROUND SHOCK AND OVERPSESSURE

4.4.1 Accelcration (and Overpressure). To compare accelerations on the basis of air-blast taput, the ratio of pezk acecleration to peak overpressure versius overpressare was pioticd.

Figure 4.15 summarizes all 5-fuot depth vertical acceleration observations in Frenchman

Flat. Also plotted are the acceleration-overpressure ratios for the Priscilla and UpshotKnothole Shot 10 precursor. The measured overpressures at Prisetiln Stations 2 and 4 ?rpeared Low when compared with pressure data of previous shots. At Station 2, a cable break occurred prior to recording of the peak overpressure. The source of the apparently low pressure at Station 4 has not been found. Both the as-read and smoothed data points are indicated. The accelerations induced by the main alr-blast wave decayed rapidly on Prisella due to the formation of the precursor and also due to the distance effect (Tumbler data discussed below). Taking this into account, the Upshot-Knothole Shot 10 Type 1 overpressure wave form accelerations were in agreement with those of Priscilln. The single Upshot-Knothole Shot 9 observation appeared table 4.2 maximum strain, shot priscilla

Computations					Measurements		
Gage Code	Dupth	Time, ${ }^{\text {c }}$	$\begin{aligned} & \text { Displ } \\ & \text { at } L_{s} \end{aligned}$	Aver Max Strain	Gage Code	Peak Strain	Time or Peak
	It	sec	It	ppk*		ppk*	sec
4 V 1	1	0.193	0.390	23.8	-	-	-
4V5	5	-	0.295	-	-	-	-
4V1	1	0.195	0.411	26.6	-	-	-
4V10	10	-	0.171	-	4SV5	8.8	0.195
4Y5	5	0.205	0.709	30.0	-	-	-
4V10	10	-	0.259	-	45 VIO	13.7	0.215
4V10	10	0.2025	0.365	11.2	-	-	-
4V20	20	-	0.253	-	-	-	-
4V20	20	0.2335	0-304	7.0	-	-	-
4V30	30	-	0.234	-	-	-	-
4V30	30	0.240	0.254	6.3	-	-	
4V50	50	-	0.127	-	45 V 50	7.8	0.249
6 V 1	1	0-284	0.147	5.8	-	-	-
6V5	5	-	0.124	\cdots	-	-	-
6YS	5	0.290	0.156	5.1	-	-	
6Y20	20	-	0.080	-	-	-	-
6V20	20	0.300	0.122	6.5	-	-	
6Y30	30	-	0.057	-	6Svas	$5-9$	0.304
SY30	30	0.317	0.110	2.5	-	-	-
6450	50	-	0.061	-	esviso	3.0	0.380

- Perte per thousand.
lower than would be expected from Tumbler Shot 1, and the Priscilia prectersor accelerations Fere larger by about the anme amount. In general, the accelerations appeared to be larger in the Frenchouan Flat area than in the Yucca area, not however by an amount which was significant compared fith the seatter of data.

Or some interest were the peak acceleration-overpressure ratios obtained trom the hortzontal (positive outward) acceleration observations at 10- and 50-foot depths. At Suation 4, the ratios were about one third those corresponding to the vertical accelerations and at Station 6, although the 10-foot depth vertical gage was lost, the 50-foot data indicated that the horirontal and vertical couponents were approximitely cqual.

The ratio of peak negative acceleration to peak overpressure versus overpressire is plocted in Figure 420 for Tumbler Shots 1 and 2 (References 2, 17 and 18). The ratio appears to be fairly independent of overpressure. The heighes of burst of both Shot 1 and Shot 2 were sufliciently high that mo precursor formed and all overpressure wave forms were mearly icical. Since the yields were nearly identical, it must be concluded that the two to one difference in accelerainin-pressure ratio must result from differences in soil propertics between the Frenchman Flat and Yucen test areas.

Fipure 4.21 compares the three Tumbler shots detonated over the same partion of the Yucea
test area. One first notes the marked reduction in the Shot 4 acceleration-pressure ratio at 10 psi. The smider than expected accelerations were the result of the nonideal precursor wave rorms. The Type 4 overpressure wave form has the largest rise time and heace induces the least ground acceleration. As soon as the wave forms return to near ideal (Type 7), the acceleration assumes its normal value. Taking the effect of overpressure wave form into consideration, the effect of device yield if any, does not appear to be discernible within the scatter of data.

In Figures 4.20 and 4.21 there is an obvious tendency for the acceleration-pressure ratio to increase at both ends of the pressure scale. When the data of Figure 4.21 are plotted against ground range as in Figure 4.22, there appears to be a fair correlation with distance. This characteristic may be due to changes in soll properties or due to shock wave parameters not

Figure 4.18 Earth stain versus depth, Shot Priscilin
considered, e.g-, shock velocty and/or wave front curvature. The increase in acceleration satio at close-in stations may possably be connected with the latter stince the same tendency is observed on Tumbler shot 1 (Figure 4-20) and on the two near ideal wave forms on Pricella (Figure 4.19). This point cannot be clarified at the prescat time due to insufficicnt theorctical investigation and mithout more detailed stedy of soll properties in the Yucea area.

The rematning set of observations at 5 - [oot depth are the vertical acceleration data of Jangle HE-4 (Reference 4). 2,560 pounds of TNT detomed at the ground surface. The accelerationoverpressurc ratios are ploticd in Figure 4.23 and are consistent with previous observations.

Janjle (Ref-scnee 19) tertical accelerati-2n data are shown in figure i.Ei. The seatter of
-
,

Figure 4.19 Vertical acceleration, Frenchman Flat, 5-foot depth (numbers indicate overpressure wave form).

Figure 4.20 Vertical acceleration, Tumbler Shots 1 and 2, 5-foot depth (arrow points to first ground wave outrunning wave form).

Figure 4.21 Vertical acceleration, Tumbler Shots 2, 3, and 4, 5-foot depth (numbers adjacent to data indicate overpressure wave form).

Figure 4.22 Vertical acceleration at 5-foot depth versus ground range, Tumbler (arrows point to first ground wave outrunning wave form; numbers indicatc overpressure wive forni,
these data is much greater than on any of the previous experiments discussed, which makes analysis of these data rather tenuous. The attenuation indicated by the Jangle S 10-foot data appears to be greater than that observed on Tumbler or Priscilla, as was discussed earlier.

The vertical acceleration data of Project Mole (Reference 3) aboveground detomations are shown in Figures 4.25 and 4.26. Nevada sand and gravel mix corresponcis to the soll in the Jangle S, HE-4 test arca. The Utah dry clay site whs located at Dugway Proving Ground, Utah.

In Figure 4.25, although the scatter of data is large, inote that acceleration-pressure ratios are plotted on logarithmic scales), no systematic variation with height of burst is to be found. Secondly, the range over which the acceleration-overpressure ratio extends is an order of magnitude large, i. e., the ratio is more dependent on overpressure (or ground range) than that of the large HE (Jangle HE-4) or nuclear (Jangle S) detonations in the same area. This trend toward higher ratios at the extreme ground ranges is observed however in Tumbler Shots 2, 3, and 4 and may be connected with outrunning of the ground wave.

In Figure 4.26 the dependence on overpressure is not as pronounced, and the accelerations appear to be a factor of two larger than those of Figure 4.25 for pressures greater than 30 psi.
4.4.2 Velocity (and Overpressure). Subsequent to outrunning of the gronnd wave, the velocityjump overpressure ratio increases with decreasing overpressure (or increasing ground range). This observation is in conformity with elastic theory (private communication with J. K. Wright, AWRE). Prior to outrunning, the ratio should be independent of pressure. All 5 -foot depth peak velocity data, where the air blast was superseismic, are shown in Figure 4.27; 80 percent of the data fall within a velocity-pressure ratio range of 0.04 to 0.06 . There appears to be no systematic var iation with either yield, overpressure level or wave form, or test area. The last conclusion is at variance with the behavior of the acceleration data.

The data showa in Figure 4.27 may be compared with the theoretical result,

$$
\frac{U_{-}}{P}=\frac{1}{p C_{L}}=\frac{32.2 \times 144}{90 \times 1,600}=0.032 \frac{\mathrm{ft} / \mathrm{sec}}{\mathrm{psi}}
$$

Where the soil density is taken at 90 pcf, and from Figure $3.30, C_{\text {L }}$ at 5 -foot depth is 1,600 $\mathrm{ft} / \mathrm{sec}$. The agreement between theory and expertment appears extremely good, especially if one recognizes the approximate nature of the theoretical result. Secondly, the true seismic velocity in the first 5 feet is difficult to measure accurately: the estimated error is of the order of 30 percent. The large seismic velocity gradieut also presents both a theoretical and practical problem.

The velocity of propagation of ground motion may be determined directly during an experiment from the arrival time of ground motion and the air blast arrival over the gage location. This calculation was made for Priscilla using arrival times at 10 -foot depth. These calculations, Table 4.3, lead to the conclusion that the average propagation velocity of ground motion between the surface and $10-$ foot depth is less than $1,000 \mathrm{ft} / \mathrm{sec}$. If the average velocity of Table 4.3 is used in the previous calculation one arrives at the resule,

$$
\frac{\mathbf{U}_{V}}{\mathbf{P}}=0.060
$$

The fact that the high amplitude stress wave propagates slower than the seismic wave is not unexpected in view of the theoretical treatment of von Karman and Duwez (Reference 20) of wave propagation in plastic solids. However, additional treatment of this observation is required before definite conclusions can be derived.

Velocity-jump-overpressure ratios for Tumbler Shots 1 through 4 are shown in Figures 4.28 through 4.31. All data displayed in Figure 4.28 have been reintenrated as outlined in Appendix C. Data in Figures 4.25 through 4.31 havie been reintegrated only for those stations where the blast wave is superseismic (the first station at which the ground wave outruns is also ineluded).

Figure 4.23 Vertical acceleration, Jangle $\operatorname{HE}-4$, 5-foot depth (f indicates interpolated overpressure data).

Figure 4.24 Vertical acceleration, Jangle S.

Figure 4.25 Vertical acceleration, Project Mule, Nevada sard and gravel mix, 5-foot depth.

Figurc 4.26 Verticill acceleration, Project Mole, Utah dry clay, 5-foot depth.

SECRET

Figure 4.27 Vertical velocity, 5-foot depth, summary of superseismic data.

Figure 4.28 Vertical velocity, Tumbler Shot 1, 5-foot depth.

The remaining data are the original reported results. In Fligure 4.32 are shown all 5 -foot vertheal velocity obscrvations in Frenchman Flat.

The horlzontal outward velocity at Station 4 on Shot Priscillia gave a peak value at 10-and 50 -foot depths which is about one sitath the maximum downward velocity at the same locations. Although the $\mathbf{1 0}$-foot vertical aceclerometer record at Station 6 was lost, the comparison at $\mathbf{5 0}$ feet reveals that the maximum outward velocity was less than one hall the peak downward velocity. The apparent relative increase in the outward component as one goey to increasing depths and ground ranges is due to the greater Influence of signals from remote sources upon the ground motion.

4-4.3 Displacement (and Overpressure). The peak vertical displacement-positive overpressure impulse ratios at 5-foot depth for all records analyzed to date are shown in Figure 4.33. Some remarks on the Priscilla results are periinent. First, the 5-foot depth displacement at

> TABLE 1.3 AVERAGE PROPAGATION VELOCITY OF DIRECT WAVE, TO 10 FEET, SIOT PRISCILLA

Overpressure	C_{L}
$5 \mathbf{5 i}$	$\mathbf{f t} / \mathrm{sicc}$
550	685
440	660
340	980
275	1,080
210	755
100	880
60	980
	Average value
	960

Station 2 has been estimated from the displacement at 10 -foot depth, Point e of Figure 4.33, and the attenuation of displacement with depth (Figure 4.11). Second, the overpressure and impulse at Station 2 have been estimated by a reasonable interpolation between Stations 1 and 3.

The smaller-than-expected displacement at Station 1 on Priscilla has been checked and is further verified by the 10 -foot depth displacement.

Considerable variation exists between the Tumbler displacement impulse ratios. No further correlation appears evident through consideration of device yield since the variation of displacement impulse ratio is not systematic. The agreement between Tumbler 4 and Priscilla is encouraging but possibly fortuitous.

Figure 4.34 displays reed-gage displacement data for a number of Plumbbob detonations in the Yucea test arca (Reference 21). Positive impulse values have been estimated from measured overpressures and device yield using the correlation presented in Appendix D. The vertical lines adjacent to each datum point indicate the possible error involved in this estimate. Corresponding displacements have been computed from Priscilla accelerograms (Section 4.5). The same degrec of variation is evident between these data as was found in Figure 4.33.

The reasons for the wide scatter of displacement data are not known. The only conclusions which appear valid at the present time are that approdmately the same degree of variation exists in Frenchman Flat as between the Frenchman Flat and Yucea test areas, and that displacements twice those observed on Priscilla are possible for similar geological conditions.

The variation of displacement-implise ratio with peak overpressure is not surprising phenomenologically; however, from an empirical prediction stanupoint it would be desirable to eliminate such a dependency. Several inquirics have been made along these lines, aad it appears possible that displacemert may be proportional to that fraction of overpressure impulse above a certiain pressure or to that fraction of overpressare infelise delivered prior to a cer-

Figure 4.29 Vertical velocity, Tumbler Shot 2, 5-foot depth (f indicates as-reported data).

Figure 4.30 Vertical velosity, Tumbler Shot 5 , 5-foot depth (f ind icates as-reported data).

Figure 4.31 Vertical velocity, Tumbler Shot 4, 5-foot depth (findicates as-reported data).

Fifure 4.32 Vertical velocity, Frenchman Flat, 5-foot depth (numbers adjacent to data indicate overpressure wave form).

Figure 4.33 Summary of vertical displacement, Nevada Test Site (e indicates estimated value).

Figure 4.34 Summary of reed-gage data (displacement spectra), Nevada Test Site (e indicates estimated value).
tain fixed time duration. Additional work in this area is required before any conclusions can be presented.

In any analysis of vertical displacement, examination of the validity of the double integration of acceleration is worthwhile effort. As previously mentioned, most first integrations of acceleration lead to nonzero velocities at the end of the record. Provided the velocity basellne shift Is linear and one ts able to make a reliable estimate of the time of zero velocity, the second integration affords little difficulty. Prlor to Priscilla, however, data did not exist which would serve as an independent check on the results obtained. The Priscilla long-span strain gage data now provide this opportunity. In Table 4.4 a comparison is made between the Sandia long-span strain gage results and the Stanford Research Institute double integrations. Only near-surface data are compared since strain gage data at depth have not yet been reduced. The agreement between these two Independent measurements is surprisingly good, except at 1,350-foot range. One can speculate that the Sandia anchor at 200 feet at this station would be most Influenced by remote source signals, thereby reducing the apparent near-surface peak displacement. However, this type of reasoning is dangerous without more complete data. If should be noted, however, that the capability of the integration method to lead to valid permanent displacements is severely limited.
4.4.4 Strain (and Overpressure). Reference to Figure 4.18 indicates quite 2 different peak strain attenuation with depth at the two stations instrumented (750- and 1,050-foot ground range). The reason for this difference may be traced to the different character of the inputs at the two

| TABLE 4.4 | COMPARISON OF MAXIMUM |
| :---: | :---: | :---: |
| | TRANSIENT-VERTICAL DIS- |
| | PLACEMENT, SHOT PRISCILLA |

- Duuble integration of acceleration.
\dagger Long-span displacement gage.
I Cable break displacement estimated.
stations. At Station 4 (750 -foot ground range), the precursor pressure of about 25 psi precedes 2 rise (in about 5 msec) to 228 -psi peak overpressure. By contrast, the input at Station 6 indicates a precursor pressure of 20 psi and rises to only 104 -psi peak in about 15 msec .

Probably the rise time associated with the input overpressure assumes the greatest importance when considering earth strain, particularly near the ground surface. Measurements of seismic velocity indicate that the weathered layer at Frenchman Flat extended to depths of 5 or more feet. It is feasible that an overpressure-time input such as $4 B$ (Figure 3.1) would produce large strains in such a layer, whereas the 6B input would not. The few strain measurements obtained by Project 1.4 severely limit firm conclusions concerning the phenomenology.

4.5 RESPONSE SPECTRUM OF GROUND MOTION

4.5.1 Theory. The response spectrum is deftned as the maximum response of a linear, single degree of freedom, spring mass system, relative to the motion of ground. Such a system is shown in Figure 4.35.

The equation of motion, in terms of the relative displacement, x. is (dot superseript denotes differentiation with respect to time,)

$$
\ddot{x}-2 n \dot{x} \dot{x}+L^{2} x--a(t)
$$

Where: n is the ratio of damping to critical damping
$\omega=$ undamped natural ircquency, $\omega^{2}=k / m$
m = mass of system
$k=$ spring rale of system
a = ground acceleration
t = time
Development of this equation may be found in any standard text on dynamic motion, or in References 22 and 23.

Let $\dot{\mathbf{y}}=\boldsymbol{x}$ and integrate once, resulting in

$$
\ddot{y}+2 \mathrm{a} \omega \dot{\mathrm{y}}+\omega^{2} \dot{y}=-u(t)
$$

Where u is ground particle velocity. Let $\overline{\boldsymbol{z}}=\mathbf{y}$ and integrate once again,

$$
\ddot{z}+2 n \omega \bar{z}-\omega^{2} z=-s(t)
$$

Where s is ground displacement.
These equations demonstrate that the response may be calculated from knowledge of any one of the ground motion parameters, acceleration, velocity, or displacement.

Three response spectra may be defined:
$|x|_{\max }$, the displacement (response) spectrum
$\omega|x|_{\max }$, the velocity (response) spectrum
$\boldsymbol{w}^{2}|x|_{\text {max }}$, the acceleration (response) spectrum

The velocity spectrum is proportional to the maximum strain energy per unit mass for an instantaneous applied force and no damping,

$$
\frac{\varepsilon}{m}=\frac{k|x|_{\max }^{2}}{2 m}=\frac{1}{2} \cdot \omega^{2}|x|_{\max }^{2}
$$

For a small amount of damping, $n \sim 0$, the acceleration spectrum equals the maximum absolute acceleration of the mass, \ddot{q}.

One has

$$
x=q-s \text { or } \bar{x}=\bar{q}-a
$$

From the equation of motion ($n=0$)

$$
\ddot{x}+2=-w^{2} x .
$$

Hence

$$
|\ddot{q}|_{\max }=\omega^{2}|x|_{\max } .
$$

A few characteristics of response spectrum may now be IUustrated. Take the second form of the equation of motion. The ground particle velocity may be characterized by a peak value, u_{m}, and 2 duration T, as in Figure 4.36, i. e., $u / u_{m}=\Phi(T)$ and $t=T$.

Let $Y=\left(y / u_{m}\right) T^{2}$ and $\Omega=\omega T$, then $\ddot{Y}+2 \Omega \Omega \dot{Y}+\Omega^{2} Y=-\phi(\pi)$.

The velocity spectrum, $\Omega|\hat{Y}|_{\text {max }}$, is a single valued function of Ω only.
But

$$
\Omega|\dot{Y}|_{\max }=\omega T-\frac{1}{T} \frac{|x|_{\max }}{u_{m}}
$$

Hence $\left(\omega|x|_{\text {max }}\right) / u_{m}$ is also a single vaiucd function of ωT as in Figure $4.37 a$.
In Fisure 4.37 b the velocity spectrum of Figure 4.36 is displayed for large T , large yield devices and small t, small yield devices. The peak value of wlx $l_{\text {max }}$, does not change provided the peak particle velocity does not vary, i. e., constant overpressure. However, the curve shifts toward the lower ircquencies as the yield increases. These statements are true only if $\phi(T)$ is invariant.

In the same manner it may be shown that

$$
\begin{aligned}
& \frac{|x|_{\max }}{d_{m}}=f_{1}(w T) \\
& \frac{w^{2}|x|_{\max }}{2_{m}}=f_{2}(w T)
\end{aligned}
$$

Where d_{m} and a_{m} are the peak ground displacement and acceleration, respectively.
As the frequency ω (or more rigorously $W T$) approaches zcro, the response $\mid X_{\text {max }}$ approaches the peak ground displacement. At large values of ω (ωT) the response approaches the peak acceleration divided by $\boldsymbol{\omega}^{2}$. Hence as $\omega->0$

$$
!!_{\max } \sim d_{m}=u_{m} T \int_{0}^{1} \frac{u}{u_{m}} d r
$$

and

$$
\frac{\omega|x|_{\max }}{u_{m}} \sim C_{1} \omega T
$$

where

$$
C_{1}=\int_{0}^{1} \frac{u}{u_{m}} d \tau
$$

As $\omega \rightarrow \infty$

$$
\omega^{2}|x|_{\max } \sim a_{m}=\frac{u_{m}}{T}\left|\frac{d /\left(u / u_{m}\right)}{d \tau}\right|_{\max }
$$

and

$$
\frac{\varphi|x|_{\max }}{u_{m}} \sim \frac{C_{2}}{\dot{\omega} T}
$$

where

$$
c_{2}=\left|\frac{d /\left(u / u_{m}\right)}{d \pi}\right|_{\max }
$$

The conditions under which the velocity spectrum may be sealed as in Figure 4.37b, require

Figure 4.35 A linear, single-degree-af-freedom system.

Figure 4.36 Schematic diagram of ground particle velocity.

Figure 4.37 Schematic diagram of velocity spectrum.
that the maximum disphacement at constant overpressure (U_{m} Is proportional to overpressure) vary as T and that the peak acceleration at constant overpressure viry as T^{-1}. That is, all detalls of the velocity time history must scale \ln a consistent manner.
4.5.2 Measurements. The displasement spectrum may be determined either by direct measurement with reed gages, by mumerical calculation of the response of a linear system to the ground motion, or through use of the electrical-mechanical analogy by converting the measured ground mation into an electrical signal (Reference 24). All methods will produce identical results provided certain precautions are taken. An excellent example of equivalent results obtained by direct measurement and the analog calculation is presented in Reference 25.

Reed gages should be constructed so that their springs remain linear up to the maximum response mensured. The damping should be linear, i.e., viscous, up to the maximum response. The percent of critical damping should be known and preferably should be small and approximately the same for each spring of the set.

The accuracy of numerical or analog calculations of the response depends first on the accuracy of measurement of the ground motion, i.e., the accelerogram. As discussed in Appendix C an acceierometer-galvanometer system will gield faithful results if its natural frequency is more than twice the fundamental irequency observed in the ground motion, and hence it is unwise to calculate response spectrum for frequencies greater than half the accelerometer or galvanometer frequency, whichever is smaller.

Secondly, the aecuracy of numericai calculation depends on the fineness of the calcuiation network, i.e., the time interval between successive readings of the record, in relation to the sophistication of the integration program. The time interval is usually limited by the precision of the time base on the original record (0.5 msec on Priscilla, 1 msec on previous operations). The integration program selected is a compromise between the cost of running a complex computation and the maximum frequency to which the computations are carried. For example, the simplest program, using the particle velocity as the inyul, appears to give rellable results for the majority of the Priscilla records to a frequency of 250 radians $/ \mathrm{sec}$ (40 cps). To compute the response of a 100-cps system, a more complex (and costly) program must be written.

This second consideration is not usually a limiting factor in analog calculations. However a necessary condition for both calculations is that the velocity at the end of the pulse be zero. This is of major importance at low frequencies and becomes less important as the frequency increases (Reference 26). The importance of correcting for the baseline shift discussed in Appendix C is now further emphasized.

Response spectra for all the Priscilla ground motion data, excepting Stations 2V5, 5V5, and SV10 have been calculated to a frequency of 150 radians $/ \mathrm{sec}(24 \mathrm{cps}$) and about half these have been extended to 250 radians $/ \mathrm{sec}(40 \mathrm{cps}$). Station 205 was eliminated due to a spurious electrical signal, and 5V5 and 5V10 were eliminated because of cable breaks. Displacement response spectra are shown in Figures 4.38 and 4.39 and the corresponding velocity response spectra in Figures 4.40 and 4.41. In Figures 4.40 and 4.41 are shown the asymptotic values as $\omega-\infty->0$ (Curve A) and as $\omega-->\infty$ (Curve B). In Figure 4.42 are shown a selected number of acceleration spectr2. The calculations have obviously not been carried to frequencies high enough to determine the maximum of the acceleration spectra.

The results of Figure 4.38 indicate a flat response to 10 radians $/ \mathrm{sec}(1.6 \mathrm{cps})$. A reed gage frequericy of 25 cps would respond generally within 10 percent error in maximum transient vertical and horizontal displacements. The spectra are smooth out to and including Station 4 (275 psi). The spectra at Station 6 (100 psi) begin to assume a jagged character which becomes more pronounced at Station 7 (60 psi) as the frequency increases.

The overpressure wave forms from Station 3 (340 psi) on were precursor Type 1, Appendix A. The only significant diference in the shape of the overpressure-time curve was increased precursor duration and rise time of the main overpressure pulse at the larger ground ranges. Herce, it docs not appear that the change in character oi the response can be associated with the local ground wave but rather that it results from interference of the refracted groundtransmilted wave.

100
SECRET

Figure 4.38 Continued.

Figure 4-39 Shot Priscilla horizontal displacement spectra, 0.5 percent critical damping.

This conclusion is supported by close examintion of the aceeleration records. At Station 4 (275 psl), the ground wave has not yet outrun the maln alr-klast wave but arrives slightly behind the direct signal. The interference is most pronounced at the $\mathbf{2 0}$ - and $\mathbf{3 0}$-foot depths. At Stations 6 (100 psi) and 7 (60 psi), the ground wave appears to be outrunning the maln blast wave but not the precursor. This is possible since the precursor propagation velocity at these groand ranges is roughly twice the moin wave velocity.

This example illustrates one of the inherent advantages of accelerograms over reed-gage data in that significant information may be lost when an attempt is made to reduce primary data

Figure 4.40a Vertical velocity spectra, 5-foot depth, Shot Priscilla.
at the instrument itself. However, the reed gage, or preferabiy a displacement-time meter, bas the adrantage of being insensitive to the type of baseline correction which appears necessary to the integration of accelerograms. These comments point out that neither accelerometers nor reed gages (or other displacement meters) are completely self sufficient and that the most advantageous instrumentation probably will conslst of both types placed as a pair rather than as separate entities.
4.5.3 Correlation and Scaling. The question of correlation and scaling of the response spectra is now considered. In Figures 4.43 and 4.44 are shown the vertical velocity spectra for 5- and 10-foot depth no-malized in the manner indicated in the section on theory. Data for the 100 - and 60 -psi stations are not shown due to the interference of the ground wave, and data for the 550 -psi station are not shown due to the anomalous (low) values of peak displacement at this station.

The velocity spectra were chosen over the displacement and aeceleration spectra since the wiximax, i.e., the maximum energy per unit mass, is one of the prineipal factors in design of

Figure 4.406 Vertical velocity spectra, 10-foot depth, Shot Priscilla.

Figure 4.40c Vertical velocity spectra, 275 psi, Shot Priscilla.

Figure 4.40d Vertical velocity spectra, 100 psi , Shot Priscilla.
shock isolation equipment. Since the displacement and acceleration are bolh known functions of the velocity, they may be casily derived lrom Figures 4.43 and 4.44. For T, the normalizing factor for ω (Section 4.5.1), the overpressure posittve phase duration is used, again as a matter of cunvenience, rather luan the duration of the velocity pulse. Whether or not this serves to correlate the data consittutes a test of the validity of the procedure. Furthermore, the overpressure duration ts a known quantity independent of the ground motion, a factor necessary for scaling to larger ylelds.

The smoothed curves of Figures 4.43 and 4.44 are identical, which is encouraging; hawever, the variation in T is only 25 percent and hardly constitutes a valid test.

The normallzed velocity spectra for 50 -foot depths are shown in Figure 4.45 and compared

Figure 4.41a Horizontal velocity spectra, 275 psi, Shot Priscilla.
with the spectra for 5- and $10-$ foot depths. The normalized value does not change significantly although the frequency at which this maximum occurs decreases. Table 4.5 summarizes the maximum ratios for all gages. The average ratio for all vertical gages except Station 7 (60 psi) is approximately 1.2; at Station 7 the ratio Is greater than 2 due to the ground weve. Note that for all horizontal gages the maximum value of the normalized velocity is greater than two.

The normalized horizontal spectra for the 10-and 50-foot depths are shown in Figures 4.46 and 4.47. The 100 - and $275-\mathrm{psi}$, 50 -foot depth and the $100-\mathrm{psi}$, 10 -foot depth spectra are similar while the 275-psi, 10-foot depth exhibits marked differences.

Figure 4.41b Horizontal velocity spectra, 100 psi , Shot Priscilla.

Figure 4.42 Shot Prisollla vertical acceleration spectra,
0.5 percent aritioal damping.

Figure 4.43 Normalized vertical velocity spectra, Priscilla 5-foot depth, 0.5 percent critical damping.

Figure 4.44 Normalized vertical velocity spectra, Priscilla $10-$ foot depth, 0.5 percent critical damping.

Figure 4.45 Normalized vertical velocity spectra, Priscilla 50-foot depth, 0.5 percent critical damping.

Figure 4.46 Normalized horizontal velocity spectra, Priscilla 10-foot depth, 0.5 perecnt critical damping.

4.6 SOL STRESS-STRAIN CONSIDEIRATIONS

4.6.1 Soil Survey Tests. As a pare of Project 3.8 enrrled out by Waterazays Experiment Station (Reference 14), the compressibility characteristics of the undistarbed foundation were determined using lour types of tests. A modulus of deformation was deterniner from consolldation test data using the slope or the stress-straln curve in the first eycle of loading at applied stresses of 50 psi and 100 psi . The morlulus of compression was determined using the maxdmum slope of the stress-strain curve Irom constant ratio of appiled stress triaxial tests. A compressive modulus was determined from soniscope test data using conventional procedures. A modu-

Depth	Overpressure	$\omega\|x\|_{\text {max }} \div u_{\text {max }}$	
		Vertical	Horizontal
\%	Psii		
1	275	1.32	-
	100	1.39	-
5	550	1.23	-
	340	1.34	-
	275	1.22	-
	100	1.50	-
	60	0.98	-
10	550	1.30	一
	440	1.18	-
	340	1.33	-
	235	1.08	20
	100	-	$\bigcirc 0$
	60	1.52	-
20	275	1.23	-
	100	1.31	-
30	275	1.46	-
	100	1.18	-
50	275	1.17	2.9
	1×9	1.28	2.3

lus of elasticity was determined using data from field plate bearing tests. The data from the above tests which are pertinent to Project 1.4 are summarized in Table 4.6.

Looking at Table 4.6, based upon the consolidotion test, it may be noted that the modulus of deformation for the matural soll generally increased with an increase in applied stress. It was higher also for stresses applied parallel to the stratification than for stresses applied normal to the stratizicaiion. Ir is also noted that the modulus for the compacted backill assumed values somewhat higher than for the natural soil.

Variation in soil modulus for different trpes of tests is to be expected. The rate of application and duration of load undoubtedily imflnence the magnitude of the soil modulus. The consolidation, triacial, and load-bearing tests are relatively slow tests, whereas the soniscope test is analogous to a rapid test wherein the load is applied for a short period of time. Other factors such as side wall friction for the consolidation test specimens and the distribution of stress in the triaxial test specimens also undoubtedly influence the test results.

Figures 4.48 and 4.49 present tspical exmples of stress-strain diagrams taken from the Project 3.8 report. The consolldarion test results (Figure 4.49) show a characteristic slow take-ofl at low stress on the first compression cycle; the second cycle loading curve does not display this betavior to the same degree. This behavior might be due to some sample-apparatus

Figure 4.47 Normalized horizontal velocity spectra, Priscilla 50-foot depth, 0.5 percent critical damping.

Figure 4.48 Stress-strain curves, undisturbed soil, Frenchman Flat. (Reprinted from Reference 14.)

 Axial Strain, percent
 Areo'franchman flat

inifial lotecal confining pressure equivatent to enlsting overburden pressure (31.2 pil) applied. Deviator siress and additional cone lining pressure opplied in increments of 10.0 gil ond 2.5 pal, respectively.

Max. langent mad. of compression :14,200 psil.

Areo: Fienchmon Flol
Loterol confining pressure equavalent ic enisting overburden pressure (31.2 psi) applied eycliely 3 limes. Atter $3^{\text {rd }}$ opolicatlon of confining pressuee deviotor stres and odditional confining pressure opplied in nerements of to.0 psi and 2.5 psi, respee. lively.

Mox tongent mod. of compressionas 9,050 psi.

Figure 4.49 Projeot 1.4 constant ratio of applied stress, triaxial tests, undisturbed soll, 50 -foot depth. (Reprinted from Reference 14.)

Figure 4.50 Stress-straln diagram, Statlon 4 (GR: 750 (eet), Shot Priscillin.

Figure 4.51 Stress-strain dlagram, Stallon 6 (OR: 1,050 (eet), Shot Priscilla.
coupling alignments which must be affected before the reltable measurement is taken. Also, it should be neted that the tests indicate strains in excess of 4 percent for 100 -psi applied stress in the first eycle; the second cycle produces only about 1 percent strain for the same applied stress. The iriaxial results of Figure 4.49 indicate 1 to 1.5 percent strains for intor stresses approuching 100 psi.
4.6.2 Deduced Stress-Strain. Since stress and strain were measured independently at various depths in Fremelman Flat soil (Project 1.4), it would be possible to construct a measured stress-strain diagram. This possiblity is severely llmited by the fact that so many of the strainTABLE 4.6 PROJECT 3.8 SOIL SURVEY RESULTS

them	Natural Soil			Compacterl Backrill				
	Ranged		Average	Ranged		Average		
	From	To		From	To			
Modulus of deformation (consolidation test) Normal to stratification								
50 pai	2,140	12,150	5,300	3,580	20,700	6,630		
100 pai	3,000	13,900	6,180	4,000	20.700	8,665		
Parallel to stresfiention								
50 psi	11,580	16,800	14,500	-	--	-		
100 psi	10,330	26,780	18,550	-	-	-		
Modulue of compression (triaxial rest)	9,050	19,050	13,300	-	-	-		
Compressive modulus (soniscope test)	31,000	155,000	$9 \mathbf{6}_{\mathbf{2}} \mathbf{2 0 0}$	-	-	-		
Modulus of elanticity (plate bearing test)								
50 psi	6,100	6,800	6,450	-	-	-		
100 psi	4,900	3,900	4,400	-	-	-		

time records were elther lost or are inquestion. However, it is possible to construct such diagrams for the 50 -foot depths at both Stations 4 and 6 ; these deduced stress-strain diagrams are shown in Figures 4.50 and 4.51 .

The form of the stress-strain picture of Figure 4.50 is quite different from the Project 3.8 curves of Figure 4.48. This is due probably, to the rather abrupt increase of stress (4CV50) at this station, and it results in 2 tangent modulus of about $87,500 \mathrm{psi}$ in the early portion of the curve. Calculation of the modulus corresponding to the peak strain yields $17,300 \mathrm{psi}$, and the unloading modulus is about $32,500 \mathrm{psi}$. Also significant is the fact that the soil attains a strain of less than 1 percent (about 0.8 percent) at a stress of 130 psi , which means that the Project 3.8 triaxial tests approximated the working range of dynamic soil response more exactly than did the compaction tests. The residual strain (after unioading) of about 0.4 percent also agrees with the triaxial test residual magritudes.

The situation at Station 6 is also atypical but for the opposite reason from that at Station 4. At Station 6, the stress appears to incrcase unusually slow while the strain is artaining readable values. The best choice of tangent modulus corresponding to peak stress and strain computes to $12,600 \mathrm{psi}, 2$ value which again agrees best with the modulus obtained from the Project 3.8 triaxial tests. The eurve also indicates a small residual strain at this depth.

It would be unwise to draw any firm conelusions from the small amount of data available. Tentatively, it can be said that, as presently conceived, the thboratory triaxial tests are more usceful in correlation with blist results than are the compaction tests. Still to be resolved is the question of the relationship between the tangent modulus so computed and the modulus determined from measurements of seismic velncity.

Chopfer 5 CONCLUSIONS and RECOMMENDATIONS

5.1 CONCLUSIONS

5.1.1 Instrument Performance. For Operation Plumbbob Project 1.4, Iull length records were obtalned on 75 percent of the total gage channcls and partial records on an additional 12 percent. The failures were caused principally by a jammed oscillograph recorder and cable trouble on the strain gage installations.

Five out of the ten short-span strain gages installed on the sides of the two deep holes falled to give useful data, and three of the ilve useful records were incomplete. It is concluded that the reliability of these gages could be enhanced by improving the method of coupling to the soil and by redesigp of the cable connector at the gage end.
5.1.2 Acceleration and Velocity Wave Forms. For ground shock accelerations induced by air blast, there is no ideal wave form. The intcgral of vertical acceleration, vertical particle velocity in the soll, is the more famillar of ground motion parameters since it bears a direct relationship to the overpressure. It is possible to separate the predomimant earth acceleration and velocity wave forms into $s i x$ groups asscciated with the character of the input; namely,

1. Air-blast wave ideal and overpressure high, traveling superseismically.
2. Same as Irm 1 abovc, cxcept lower overpressure.
3. Air-blast wave traveling transseismicaliy, first indicatiun of outrunning.
4. Afr-blast wave in early stages of precursor development, peak overpressures high, traveling superselsmically.
5. Air-blast wave extremely disturbed, in most violent precursor region, traveling superor transgeismically.
6. Complete outruning, refracted ground wave arrives before local induced effect, air wave traveling subseismically.

Even though the blast wave may be traveling with superseismic velocity, $i_{1} e_{\text {. , no outrunging, }}$ the signal produced by the refracted wave may be surficient to modify the velocities in the later portions of the ground shock ifisturbance. At depth, outrunning occurs earlier than at the surface.
5.1.3 Sigaals from Remote Sources. When the propagatton velocit; of the air-blast wave iront is larger than the compression wave velocity in the soil, signals will not be observed underground prior to the arrival of the air wave orer the gage. As the air wave velocity decreases with distance irom ground zero, the information given to the earth will eventually arrive before the arrival of the local signal. This may occur either when a near-surface seismic velocity is greater than the air-blast velocity or by transmission through the soil along a curved path which dips into the higher-velocity lower earth strata, i.e., scismic refraction.

For Shot Priscilla, it was concluded that outrunning occurred at the ground surface at about 2,500-foot ground range, duc to a slgnal originating at about 1,900-foot ground range. However, it is possible for outrunning to occur at closer ranges for deeper measurements, and refracted signals may be evident on records after the arrival of the locil effects. Although Project 1.4 acceleration results (measurements to $1,350-$ foot ground range) showed no outrunning, they showed presence of refracted signals from remote sources, particularly at the decper gages.

The remnte source disturbances, whether ottrunning or not, are, extremely hothersome when one is attempting to integrate the acceleration-time records to obtain velocity-time and displace-
ment-time. Any eriteria used for determining the thme of zero velocity may be useless in the presence of remote source slignals.
5.1.4 Attenuation of Ground Shock with Depth. Maximum downward acceleration data indicates that between 5- and 10-cont denths the ittenuation varies between 30 to 45 percent, cxcept at the 550- and 650-foot ground ranges wherc the attenuation is practically negligible. The results at greater depths, taken into consideration with the measured selsmic profile at Frenchman Flat, suggest that the wave theory concerning energy transfer at an interface between two materials may be valld. The theory states that:

1. If an aceclerometer is located at or near the transition from a hard to a solt material, the peak acceleration is increased.
2. If an accelerometer is located at or near the transition from a soft to a hard materinal, the peak acceleration is decreased.

The peak outward horizontal acceleration at the 10- and 50-foot depths shows less attenuation with depth than does the corresponding peak downward acceleration; numerically, the attenuation is about 40 percent for the outward component and about 80 percent for the dowaward.

When all pertinent data are included, It is found that power law decay with depth of peak downward acceleration agrees best with the experimental results.

For peak downward velccity (or velocity-jump data), an exponential decay law appears to represent the data better than a power law. On Shot Priscilla, at the two stations where measurements were obtained to 50 -font depth, the attenontion of peak downurard velocity is sirallar and is apparently little influenced by the underiying soft layer documented in the refraction seismic survey.

The peak outward velocity data from Shot Prisc山la showed somewhat less attemation with depth than the downward component at 275 -psi overpressure; at the larger ground range (100psi overpressure), the outward peak velocity at 50 -foot depth was twice that at 10 feet. This effect was traced to the influence of sigmis from rcmote sources closer to ground zero.

The vertical velocity-time curve is similar to the overpressure-time curve when the airbtast wave is superscismic. The velocity peak is, however, more rounded and progressively lags the wave front by an increasing amount as the depth increases. Below 10-foot depth, the rise time to peak velocity increases significantly, even for rapid air-pressure onset.

The attenuation of peak displacement, obtained from successive integration of the accelerationtime data, corresponds closely to the attenuation of peak velocity. However, the larger than expected displacements below 5 feet at the 100 -psi overpressure station can be explained by a refracted ground wave superimposed on the motion induced by the main air-blast wave. It should a: be noted that the double integration method of obtaining displacement-time is probably not reliable for times beyond the peak value.

The attenuation of maximum vertical stress, as determined by Carison-type gages, is slight between the surface and 5-foot depth; the atteniation at shallow depths is probably a function of the duration of the overpressure input pulse, the shorter the input pulse the greater the attenuation with depth.

For the deeper stress measurements, the pattern of attenuation follows the rule of halving the peak stress for each $\mathbf{1 0}$-foot Increase in depth. However, the increase in stress at 50 feet tends to deny the validity of this rule.

Although several possibilities are offered to explain the seeming anomalous stress results at 50-foot depth, it is probable that the measurements are influenced to some degree by all the sugrested mechanisms. That is, the stress measured at 50 feet may be a function of the soil layering structure, the character of the backfill, and inequalities of planting or tamping methods in the ricinity of the gages.

In general, the stress-time wave forms compare well with the air overpressure input; below 10-foot depths, the time-to-peak increases noticeably over that observed on the surface airblast pressure.

It is difficult to determine the relative validity of the frec-field stress results obtained on Project 1.4. The cantrol of backill operations during Priscilla was considered optimum, and
extraordinary care was taken in the placement of gages; still the stress measurements appeared infermally inconsistent. It is concluded that, unieas an altermative measurement method can be devised, stress must be derived from other primary measurements such as straln and zecelaration, which are more independent of hole stze and character of the backiil.

In addition to the short-span strain gage results, it is possible to compute the average yertlcal strain between accelerometer positions from the drabie integrations (i. e., displacementtime plots;. At the 275-psi overpressure station, the peak strain suliers a pronounced decrease between 1-and $\mathbf{3 0}$-foot depths. At greater depths, the vertical strain levels ofi to a constant value. On the other hand, the data obtained at the 100 -psi overpressure station show practically no change in vertical strain with increasing depth. This difference in behavior is probably traceable to the character of the input overpressure; the rise times associated with the 100 -psl input are significantly longer than at the high pressure station.
5.1.5 Ground Shock and Overpressure. When the ratio of peak acceleration to peak overpressure is plotted versus peak overpressurc, the values at high overpressures (above 200 psi) are high, decreasing as the overpressure drops and as the prccursor wave develops, finally increasing somewhat below 10 psi when the precursor has dissipated. The effect of device yield, if any, does not appear to be discernible. No systematic variation with height of burst is to be found; also, the trend toward higher ratios at cxtreme ground ranges may be associated with outrunning of the ground wave.

In conformity with elastic theory, subsequent to mitranning of the ground wave, the velocityjump peak overpressure ratios increase with decreasing pressure (i.e., incrensing ground range). There appears to be no systematic variation with either yield, overpressure level or wave form, or test area. The experimental ratios agree well with the theoretical result, particulariy if the velocity of propagation of the ground wave is determined from mensured accelerometer arrival times.

The fact that the finite amplitude stress waves appear to propagate slower than the selsmic waves suggests plastic flow conditions in the soil; also, relative significart: of the soil mululus determined from seismic velocity is not, 25 yet, completely clear.

Consideration of the peak vertical displacement-overpressure impulse ratios indicates a definite increase in the ratio with increasing peak overpressure in the range of 50 to 300 psi . However, the wide scatter in displacement data precludes any firm conclusions Comparisons between the Project 1.4 peak displacement data (obtained by integration of ascelerograms) amd the Project 1.5 long-span strain results show good agreement between the , swo lndependent measurements.
5.1.6 Response Spectrum of Ground Motion. The response spectrum is defined as the maximum response of a linear, single degree of freedom, spring mass system, relative to the motion of the ground. The displacement spectrum may be determined either by direct measurement with reed gages, by numerical calculation of the response of a linear system (e.g., accelcrometer) to the ground motion, or through the use of the electrical-mechanical analogy. An accel-erometer-galvanometer system will yield faithful results if its matural frequency is more than twice the fundamental frequency observed in the ground moticn.

From the results of the displacement response spectra, it does not appear that the change in character of the response can be associnted with the local ground wave, but this change probably is due to interference of the refracted ground-transmitted wave.

Using overpressure positive phase duration as a normalizing factor, it is possible to show correlation of response spectra obtained under different iuput conditions. The normalized velocity spectra for 50-foot depth when compared with spectra at 5-and 10-foot depths show similar maxima although the frequency at which this maximum orears decreases with increasing depth.

Weighing the relative advantages and disadvantates oi the rededgeres and aceelerometers fer determination of rosponse spertra, one concludes that neither page result is completely sufficient for definitive spectra; the most advantageous inst rumentation probably will consist of both types placed as a pair.
5.1.7. Soil Stress-Strain Considerations. Since stress and strain were measured independently (versus time) at various depths in Frenchman Flat soll, it is pussible to construct a measured soil stress-strain diagram. Such diagrams may be constructed for the 50 -foot depths at Stations 4 (275-psi input) and 6 ($100-\mathrm{psi}$ tnput).

The deduecd stress-strain relations appear to igree best with the laboratory triaxial tests performed upon Frenchman Flat soil samples by Waterways Experiment Station (Project 3.8). The consolidation test results yield soil modull which are much lower than those indicated by the deduced stress-strain curves. Tentatively, it can be concluded that the liaboratory triaxial tests are more uscful in correlation with blast results than are the compaction tests. However, still to be resolved is the question of the relationship between the tangent modulus so computed and the modulus determined from mezsurements of seismic velocity.

5.2 RECOMMENDATIONS

It is recommended that future work on the problem of ground motion induced by air blast include the following:

1. In conjunction with any future ground motion mpasurements, means should be provided fc: determination of the seismic signal arrivals at each measurement position; a geophone wocld serve this purpose.
2. Attention should be given to devisirg laboratory soil test methods which give promise oi correlating with field test results.
3. Work should contimue for the development of a rellable gage (or gages) which will measure directly velocity-time and/or displacement-time of ground motion. These measurements would almost completely eliminate the present uncertainty associated with integrated acceleration data.
4. The theoretical aspects of the problem should be pursued vigorously, from the standpoint of pure elasticity and, also, to include the dissipative and layeredenspects of the soil medium.
5. In ground motion measurements an independent measurement of the motion of the ground relative to some fixed point in the earth made by a mechanical gage is useful in checking displacement results from integrations of accelerograms.

Appendix A
 SYMBOLS and OVERPRESSURE WAVE FORM CLASSIFICATION

A. 1 SYMBOLS

A a acceleration, g (vertical)
P = denalty. $\mathrm{lb} / \mathrm{cuft}$
$E=$ Youngs' modulus. pas
3 a atraln, vertucal
$P \quad=$ applited alr prossuro, pal
$\Delta \mathbf{P}_{1}=$ total rise of first peacic of imput preasure wrave
$\Delta P_{1}=$ thetil rise of aecond pask of fnput preasare wave
C = atrean, verticel, pal
$\sigma \quad=$ Poismonel ratio
$\mathbf{T}_{\mathbf{R}}=$ totel rise time of stress (or velocity) wave at a particular depth (assumitur half-coside whe form of rise), 800
$T_{2}=$ sise time of ilirat penk of Iupat prossurt wave
$\mathrm{T}_{\mathbf{z}}=$ Hise time of secound peak of Impent preasure wave
$T_{y}=$ rise time of atress (or valocity) wave produced by travel to depth y

V = particlo velocity (vertical), fip
$\nabla_{c}=$ abiemic (compreasiomal) weve velocity, fps
$x \quad=$ range, ft
$y \quad=$ depth. it
$\varphi=\sqrt{\frac{1-\sigma}{(1+\sigma)(1-2 \sigma)}}$

AIR BLAST WAVE FORM, PRECURSOR TYPE I

AIR BLAST WAVE FORM, GENERALIZED

A. 2 OVERPRESSURE-WAVE-FORM CLASSIFICATION

0 A shnop rise to a double-penked masderum;

 perats cloec corpetber in time and approudmately equel in ampiltuda.In It idenl form. it it the elasalcal sioglopeaked sbock rave but is unuilly recorded an a double-pealred wave.

0

1 A shap itise to grat tor prak follorad by ythr: a platean or a alliget doeny. then a bigher secoed peak proceding the rapld decay. Thme laterval between flrst and second peake ean vary alg-

The first low peak inctication the maintonce of a disturbance which travels fater then the main wave. Thif type is detinctly noochasical. ifficantly; abock-like rises are evideat.

2 Same as Type 1 ercept thar eecoud penk La leat than lixit.

The secood peak has decayed to a lower velue than the firat and har become more rounded and last distinct. Second pank finully deripparm-

2

3 A grat large. rounded maxdmum followed by decay; then a laver, unually amaller, soeasd peak. Pressure rises may be alower than for Tyre 2.
3

The first peak of Type 2 hais doveloped to become the rounded maxdmum, wille the second penk hase decreased in magritade wilh respect to the tlate.

4 A long-rine-time time-hopped farm which exhiblis a lone dreay lume and mueh hagh.

The reinelively eharp preawore rime of Type 3 has bewa replaend by a alow rice and the eecoed peak has disappeared.

5 A preasure ries to a rounded plateru which Ia followed by a sint rise to a eeeond. higher peak.

The eincle-poried hacto form of Type 4 ewme ca develop a eamprematometype emeond park. co develop a eomprematomotype becond prak of the manin wete.

- A clearment double peill lorm oith a rise to a purem which alopet upwerd, then a aboek reve to E peat.

7 A shock rise to a prak followed by etrher a
 amples, a olom deesy.

 eomprenelon-type aecood prate becoming abocut.

The emeood perk of Type of hat owertatene the

7

TR Reficia to Type 7 in ration of rrailar refoce
 Hod whene

- A chealcal wave form.

Sharp alade-peatind form. Followid by clamate deexy.

8

 requine rwanetion.

ER

Appendix 8

CATALOG of GROUND MOTION MEASUREMENTS

TABLE \＆ 1 SUMmARY OF NEVADA SUREACE AND AIR NUCLEAR burists ON WHICH STRONG GROUND MOTION WAS MEASURED

Cx¢こニ゙on	Shot	Yield	Height of Burst	Date	Area
		kt	f		
Buster－Jangle	5	1.19	3.5	Nove mber 1951	NTS－Y
Tumbler－Soapper	1	1.05	793	April 1952	NTS－FF
	2	1.15	1，109	April 1952	HTS－Y
	3	30	3.447	April 1952	NTS－Y
	4	19.6	1，040	May 1952	NTS－Y
Upshot－Knothole	1	16.2	300	March 1953	NTS－T
	9	26.0	2，423	May 1953	NTS－FE
	10	14.9	524	May 1953	NTS－FE
Plumbbob	Priscilla	39	700	Jane 1957	NTS－FE
	Whitney	19.2	500	September 1957	NTS－Y
	Galileo	11	500	September 1957	NTS－Y
	Smokey	43	700	August 1957	NTS－Y
	Stokes	19	1.500	Aegust 1957	NTS－Y
	Charleston	11.5	1，500	Seplember 1957	NTS－Y

table b. 2 number of oround motion measurements, nts

- FIrst source la alr blast.

1 Reed yage data.

TABLE B. 3 NUMBER OF GIIOUND MOTION MEASURFMENTS, EPG H. horizontal direction; and V, vertical direction.

Oparation	Depth	Ovorpressure	Numbor	Source of Data *
	ft	psi		
Greeabouse	1 to 61	>50	411	
			4V	
		>10	11H	WT-53
			10V	WT-69
		Total	1311	
			13V	
Ivy	17	> 50	$1 H$	
			15	
		>10	3H	WT-602
			3 V	WT-9002
		Toul	4H	
			5V	
Castle	15 ¢ 17	>10	31	WT-920
			2 V	WT-9002
Rodwing	2.5	>50	1H	ITR-1302
			6 V	ITR-1364
Elardiack	1 to 100	>50	$\begin{aligned} & 17 \mathrm{H} \\ & 19 \mathrm{~V} \end{aligned}$	ITR-1613

- First source is air blast. t Varies with atation.

TABLE R-4 SUMMARY OF MOLE ROUNDS (256-POUND TNT)

Height of Burst, ft	0	0.83	1.65	3.18	6.35
λ (scaled beight of burst for HE)	0	0.13	0.26	0.50	1.0
Test Area					
\quad Utah duy elay	1	1	1	2	1
Nevada graval and sand mix	1	1	2	2	1
Calitorniz met sand	1	1	-	-	-
\quad Calliforaia moist clay	-	1	-	-	-

TABLE B. 5 NUMBER OF GROUND MOTION MEASUREMENTS, JANGLE HE-4

Clarge	Helght of Burst	Overpressure	Number of Observations, 5 ft
	π	psi	
2,560-1b/TNT	2	>50	411
			4 V
		>10	8H
			8V
		Total	1011
			10 V

SECRET

Ground motlon instrumentation has been confined, except for the lorg-span dlsplacement gastes used on Shot Priscillin, to accelerometers, Determination of velocity and dispiacement requires numerical integration of these records. Prior to Shot Priscilla, this was usually done with a planimeter as a two-step process. Integration of Priscitia records has becn performed oumerically using the IBM 650. AcceleraLion records were read at $1 / 2$-msec intervals throughout the portion of maximum nuctuation. As the records amoothed out, this time interval was lengthened successively to 1. 2. and 4 msec, mainly as an economy measure. Records were read in the und of the ais-blastpositive phase or past the point of apparent signal, whichevar was longer.

C. 1 ACCELERATION BASELINE SHIFT

It ls an indisputable fact that the ground motion due to sir-blest pressure must cease at some time after the passage of the blast vave. Most integrations Indicate. in ranying degree, that the velocity at the end of the Integration is not zero. This result can be interpreted as an meceleration record baseline shift, which is aflected during recording or during reading of the record. If it can be assumed that there are no irequency response problems (sea Section C.2), the source of the difficulty can be traced to the character of the acceleration-time wave form. Reference to Figure 4-la shows that the duration of the first acceleration peak is a small fraction of the total record length. Therefore, a small error, perhaps only one or two percent of the peak acceleration, will accumulate as time increases to result in a significant error in velocity at the end of tioe integration.

Speaiding instrumentally, there are many possible ways the acceleration record baseline (zero signisl reference) could shifi However. in uhis analysis the sbift is considered as a reading error, a conciusion which is substantiated by the fact that the amount of correction that is necessary to achieve zero velocity at the end of the record is frequently within the least count of the reading equipmeat (see Table C.1)-

Figure C. 1 shows some typical examples of velocitytime wave forms obtained from typies a, b, or c accel-eration-time wave torms (Figure 4.1). It is thought thac a goud eriterion for zero velocity in such cases is that the velocity equals zero at in time after signal arrival equal to the duration of the air-blast input prositive phase. For this eriterion, Figure C. 1 indi-
cates how the baseline would be shifted on tha velocitytime plots; subsaquently, the velocity-time plots relative to the shifted baselines would bo integrated to obtain the corrected displacement-time plotse It should he prinited out that, in the case of gages burled deeprer than 50 feet in a soil whose selsmic velocity varies siggiflcantly with depth, it would be unwise to apply the above criterion for zero velocity even for Ideal overpressure inputs. Each record would have to be regarded as a special case.

As the peak acceleration decrenses, the problems of accurate record realing diminish with the exception of greund waves irom remoce sources, which result in exceptionally complicated records. A typical erample (type i) is shown in Figure C.2. where the upper portion of the figure illustratos the original integration without correction. Beyond 800 msee the veloclty increasos (negatively) linearly. The inoar basoline shift required to correct the volocity to sero at the end of the grewad motion is shown as well as the corrected veloctty. However, it is at once apparent thar the criterion of zero velocity at the and of the alr-blast pressure pulse is not applicable when signals from remote sources are present. For these, each uncorrected velocity must be plotted and a best judgment made as to the time zero veloelty is attalned, thus it Is important that the acceleration-time record be read to times beyorid which the slgmal apparemtly has settled down to small amplitudes. In complex casea, the practice has been adopted that the baseline be andfusted to maximize the resuiting peak displacement. The ois-placement-time records will then indicate a residual displacement equal to the peak displacement. If more than one choice of baseline shill appears reasonable, the extremes are calculated

If the velceity records appear to require other than a single linear correction; e. R., 2 series of hnear corrections attached end-to-end, the tata are considared suspect and not corrected or tabulated.

Table C. 1 includes a summary of the magnitude of the corrections made in the integratlons of the Priscilla acceleration-time recordsh In terms of the peak acceleration, the baseline shifts varicd between 0.06 and 4.4 percent, which corresponds 20 between 0.1 and 5 counts on the electromechanical reader (Oscar). The reavier is sec up so that one count equals slightly less than $1 / 180$-inch deflection on the gage record and the reproducing accuracy of a single reader is approximately $a 2$ counts. Thes it aprears that the need for a

TABLE C. 1 BASELINE CORRECTIONS, SHOT PRISCILLA
(1) abd (2) Irdicata alternata baselina choices.

Gage	A Uncor	A Cor	$\frac{\Delta \mathrm{A}}{\mathrm{ACor}}$	Oecar Counts in $\Delta \mathrm{A}$	V Uncor	V Cor	$\frac{\Delta y}{y \operatorname{Cor}}$	D Uncor	D Cor	$\frac{\Delta D}{D C O F}$
	8	g	pet		fleme	12/sec	pct	15	15	pet
195	363.7	357.7	1.68	3	26.7	25.3	c. 94	214	0.693	208.
1 10	221.9	225.9	1.78	3	13.9	14.8	6.11	0.298	0.343	13.1
2Y5	178.9	173.4	3.17	4.5	20.7	17.9	14.98	1.47	0.586	150.2
2V10	150.6	151.9	0.87	1.5	19.5	20.2	285	0.718	0.964	25.5
3V5	120.5	120.9	0.27	0.3	16.1	16.3	1.18	0.717	0.839	14.5
3Y10	129.6	129.3	0.22	1	13.3	13.1	1.50	0.631	0.555	13.7
4 VI	189.3	188.3	0.56	1	17.0	15.9	7.20	0.898	0.664	$3 \leq 2$
44^{4}	53.9	54.7	1.35	2	14.4	15.3	58	0.543	0.768	29.3
4V10	38.5	39.2	1.69	2	10.1	10.9	7.13	0.373	0.521	28.4
1V202	480	46.6	1.15	6	6.91	7.64	9.65	0.329	0.488	32.5
4Y30A	37.9	38.1	0.35	2	7.72	7.92	2.54	0.345	0.388	111
4V50	13.2	13.5	227	3	4.51	4.96	9.13	0.221	0.311	28.9
4V50a	12.5	12.8	2.16	5	4.25	4.66	8.73	0.207	0.289	28.4
4H10	142	14.3	1.06	2	1.27	1.42	11.1	0.016	0.078	79,5
4150	5.08	5.07	0.10	0.3	0.890	0.885	0.58	0.014	0.014	-
5 5 5	24.3	-		-	-	-	-	-	-	-
5 V 10	16.7	-	-	-		-	-	-	-	
651 (1)	21-8	21.5	1.23	1	6.72	6.12	9.81	0.300	0.218	37.6
(2)	21.8	21.7	0.34	0.1	6.72	6.55	285	0.348	0.299	16.4
6Y5 (1)	16.7	16.7	0.08	0.1	6.05	6.02	0.53	0.27:	0.267	262
(2)	16.7	16.8	0.35	0.4	6.05	6.18	217	0.273	0.307	11.1
6V20 (2)	10.5	10.5	0.23	0.2	4.13	4.07	1.55	0.322	0.308	5.23
(2)	10.5	10.5	0.20	0.2	4.13	4.08	1.71	0.323	0.307	5.21
6V20A (1)	9.80	9.93	1.32	2	3.61	3.96	8.76	0.221	0.275	18.6
(2)	9.80	9.97	1.68	2	3.61	4.06	10.9	0.220	0.293	24.9
6830	6.49	6.53	0.54	0.5	3.49	3.59	278	0.191	0.214	10.8
6v30A	6.32	6.40	1.28	3	3.32	3.56	6.67	0.166	0.209	20.6
6vso (1)	262	2.72	3.71	4	2.97	2.30	14.2	0.125	0.169	26.0
(2)	262	274	4.38	4	1.97	2.36	16.4	0.126	0.182	30.8
$6 \mathrm{HH}_{10}$	1.30	1.31	0.53	0.1	0.383	0.400	4.25	0.006	0.008	25.0
6H50	253	254	0.71	2	0.877	0.920	4.67	0.020	0.022	9.09
TV5	9.23	9.16	0.85	1	3.09	2.84	8.55	0.376	0.239	57.3
TV10 (1)	4.84	1.94	0.06	0.1	1.50	L. 49	0.80	0.086	0.090	4.44
(2)	4.84	4.78	1.21	2	1.50	1.67	10.11	0.178	0.154	15.6
A verage			1.17	1.9			6.25			32.20

Figure C. 1 Typical velocity-time wave forms from Types an 3 , or s acceleration-time wave forms.

Figure C. 2 Uncorrected and currected vertical velocities.
baseline shift in the integration process can be traced, with few exceptions, to reading errors. This fact puth a groat emphasta upon accurate record reading, if point-by-point integrition is to be attempted. It is also apparent from the table that the corrections in terms of average parcent of peak amplitude wera smallest for acceleration (1.17 percent), larger for velocity ($\mathbf{6 . 2 5}$ parcent), and targest for displacement (322 percent)-

In some cases, perticularly on records obtilned at Stations 6 and 7. two indepandent baseline corrections
wave, for demping between 0.5 and 0.6 eritical, transitent polses are reproduced fairly woll for pulse frequencles of one slath the gage frequency. When the pulse frequency becomes equal to or greater than one hall the gage frequency, considerable error in gage response zlong with phase distortion may be expected. For the half sinc pulse, the errors are approximately 20 percent. If the damping is only 0.4 critieal. overshonts of 50 to 100 percent occur.

In general, the frequency response of accelerameters used in wenpons effects experiments has in-

Figure C. 3 Comparison of ERA and Wiancko accelerometer data, Tumbler Shot 1,5 -foot depth (numbers adjacent to data indicate accelerometer natural frequencies).
were made and the integrations carried through using both. Deviations in paak velocity from the two choices varied between 2.5 and 10.8 percent, whereas the peak displacements were geparated by as much as 41.5 percent. The largest deviaclons between the two buseline choleses were observed on the 7VIn record; it is probably more than colncideace that this record displays the most complex wave form due to ground shock signals from remote sources. This result leads to the conclusion that integration of acceleration-tume records possessing complex wave forms invo:res a good deal of judgment and is necessarily less accurate than integration of simple records, h. e. , those with local effects oaly.

C. 2 INSTRUMENT GESPOASE

The complex patiern of the ground accelerations makes a precise statement of error due to frequency response intractuble. A few general remarks can be made, hnwever, for simple inputs such as a half sinc
creased markedly since Operation Greenhouse. The nutural frequency of accelerometers used on Operation Jangle varied between 10 and 140 c -s. (Reference 19). on Operation Tumbler between 30 and 19C eps, (Reference 2), and on Operation Upshot-Kncinole all vertical accelerometers had frequencies of 450 cps , (Referenca 9). In the latter, the frequency response was limites by the galvanometer circuit at a slightly lower vaiue. Shot Priseilla response characteristics were similar to thase of Operation Upsbot-Knothole.

A graphic illustration of inadequate frequency response is found in the comparison of ERA accelerometer results (Reference 28) and Wlancko accelerometer results on Tumbler (Reference 2). ERA accelerometers with natural frequencies of the order of 40 to 50 cps were used to back up the primary Instrument une. Figure C. 3 compares the two sets of dati on Tumbler Shot 1. For accelerations greater than 5 g , the ERA equipment fails to give satisfactory results.

Appendix 0

SCALING of POSITIVE OVERPIRESSURE IMPULSE and DURATION

Figures D. 1 and D. 2 present the major portion of avallable data on impulse and duration for overpressures greater than 10 pss. As a guide in extrapolatinf. previously presenied correlations, (Reference 29). results of the theoretical solution for the point source explosion in real air (Reference 30) are included in the figures, modified by 2W theory (surface bursts).

Impulse data on Prisclliz are in agreement with the theoretical curve at high pressures. At intermediate pronmurea (10 ts 100 psi) measured impules in from 0 to 50 percent greater (duc to precursor formation) than $\mathbf{2 W}$ theory predicts. Whale it is understood that $\mathbf{2 W}$ theory does not apply theorecically to air bursts, it is belleved that impulse resulting from 2W theory will be a lower limit. Impulse predictions used chroughout the report are based on this postulate, applying a 50 percent correction as an upper limit

Dasa on duration to not follow the theoretlenal ealeulations cor overpressures greater than 100 psi. It is suspected that this may be a limitation of the lostrumentation. In order that the maximum overpressure doem not over-range the gayd or recording instrumentation, the sensitivity of the system must be reduced at high pressures. A check of the SRI system indlcates that when consideratton ia given to the absolute accuracy of reading camera records, the accuracy of reading pressure amounts to approximately 5 percent of the peak overpressure. Using this criterion, ihe theoretfcal duration curve has been constructed far the darratoa at which the overpressure reached 5 percent of its peak value. This curve deviates markudly from the theoretical phase duration (assoctated with zero overpressure) as the pressure increases. However, over 95 percent of the total positive overpressure impulise is fincluded before the overpressure drops to 5 percent of the peak overpressure. Hence, the theoretical curve of Figure D. 2 is belleved to be a legitimate gulde in the high pressure region provided alluwance is made for the increased duration of the positive phase in the 10to 100-psi region due to precursur formation.

Fisure D. 1 Positive overpressure impulse versus peak averpressure.

Figure D. 2 Fositive overpresisure daration versus puak overpresiure.

DISTRIBUTION

Milifary Diafribution ciaforeory if

UMCLASSFIFED

 D. ㄷ. ATFM: DETO

33 Eiz-
as Cuset of searf. Wanhiration 23. 5. E.
 (ascin-jri) Heanington 25, D.-

Comarider to.-Dar. Pro. Mod. Jivid!er

Comander, $A 15$ Deferme Comand, Ere ATs. Colormio.

roree

 БоVT A

104-105
307-100
109
10
م
1
12

 25. D.e.

 D.c. A.TI: Zeen. ilumy

IIb Crayrian, Arond Enroleas Eploolvea Sara:y Board, Dos,

116-119 Ch 10 ccrander, Flold Curand, gugh,
3. Max:

10-125 I. Mex. AJPid MEx
I. Mar. ATTN: FIN

127 Ccanarder, Jif-7, Arilneron Enli Sutica. Arilngrea 12.
$7 \mathrm{7a}$.

atcilc monet comission actrinites

:3x

 Jabiegina 23, J.e.

 Fors. (Surplua)

UNCLASSIFIE:

UNCLASSIMal

